CONSISTENT QUANTIZATION OF A CHIRAL GAUGE THEORY IN FOUR DIMENSIONS

1989 ◽  
Vol 04 (27) ◽  
pp. 2675-2683 ◽  
Author(s):  
SHOGO MIYAKE ◽  
KEN-ICHI SHIZUYA

Using a gauge-symmetric formulation of anomalous gauge theories, we study the consistency and symmetry contents of a chiral gauge theory in four dimensions. The gauge symmetry, restored by the inclusion of the Wess-Zumino term, is spontaneously broken and the gauge field acquires a mass. Symmetry arguments are used to determine the particle spectrum and the current algebra of the model. Our analysis indicates that, apart from a question of renormalizability, the present theory is a consistent gauge theory.

1989 ◽  
Vol 04 (14) ◽  
pp. 1343-1353 ◽  
Author(s):  
T.E. CLARK ◽  
C.-H. LEE ◽  
S.T. LOVE

The supersymmetric extensions of anti-symmetric tensor gauge theories and their associated tensor gauge symmetry transformations are constructed. The classical equivalence between such supersymmetric tensor gauge theories and supersymmetric non-linear sigma models is established. The global symmetry of the supersymmetric tensor gauge theory is gauged and the locally invariant action is obtained. The supercurrent on the Kähler manifold is found in terms of the supersymmetric tensor gauge field.


Axioms ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 24
Author(s):  
Marta Dudek ◽  
Janusz Garecki

In this paper, we show that the general relativity action (and Lagrangian) in recent Einstein–Palatini formulation is equivalent in four dimensions to the action (and Langrangian) of a gauge field. First, we briefly showcase the Einstein–Palatini (EP) action, and then we present how Einstein fields equations can be derived from it. In the next section, we study Einstein–Palatini action integral for general relativity with a positive cosmological constant Λ in terms of the corrected curvature Ω c o r . We see that in terms of Ω c o r this action takes the form typical for a gauge field. Finally, we give a geometrical interpretation of the corrected curvature Ω c o r .


2016 ◽  
Vol 31 (28n29) ◽  
pp. 1645014
Author(s):  
Alan R. White

Reggeon unitarity and non-Abelian gauge field copies are focused on as two Gribov discoveries that, it is suggested, may ultimately be seen as the most significant and that could, in the far distant future, form the cornerstones of his legacy. The crucial role played by the Gribov ambiguity in the construction of gauge theory bound-state amplitudes via reggeon unitarity is described. It is suggested that the existence of a physical, unitary, S-Matrix in a gauge theory is a major requirement that could even determine the theory.


2004 ◽  
Vol 19 (03) ◽  
pp. 223-238 ◽  
Author(s):  
J. GAMBOA ◽  
J. LÓPEZ-SARRIÓN ◽  
M. LOEWE ◽  
F. MÉNDEZ

The current algebra for gauge theories like QCD at finite temperature and density is studied. We start considering, the massless Thirring model at finite temperature and density, finding an explicit expression for the current algebra. The central charge only depends on the coupling constant and there are not new effects due to temperature and density. From this calculation, we argue how to compute the central charge for QCD4 and we argue why the central charge in four dimensions could be modified by finite temperature and density.


2003 ◽  
Vol 18 (31) ◽  
pp. 5647-5711 ◽  
Author(s):  
MATTEO BERTOLINI

We review in a pedagogical manner some of the efforts aimed at extending the gauge/gravity correspondence to nonconformal supersymmetric gauge theories in four dimensions. After giving a general overview, we discuss in detail two specific examples: fractional D-branes on orbifolds and D-branes wrapped on supersymmetric cycles of Calabi–Yau spaces. We explore in particular which gauge theory information can be extracted from the corresponding supergravity solutions, and what the remaining open problems are. We also briefly explain the connection between these and other approaches, such as fractional branes on conifolds, branes suspended between branes, M5-branes on Riemann surfaces and M-theory on G2-holonomy manifolds, and discuss the role played by geometric transitions in all that.


2009 ◽  
Vol 24 (34) ◽  
pp. 2717-2730 ◽  
Author(s):  
E. T. TOMBOULIS

We review a recently developed framework employing computable Renormalization Group (RG) decimations for gauge theories in the lattice regularization. They provide upper and lower bounds at every scale for free energies and some order parameters. By interpolating between these bounds representations of the exact quantities are obtained at progressively longer scales (coarser lattices). In the case of the SU(2) gauge theory in four dimensions RG flow to the confining strongly coupled regime is obtained for any initial coupling; whereas for the U(1) theory a fixed point is reached for small initial coupling.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Nathan Moynihan

Abstract Using the principles of the modern scattering amplitudes programme, we develop a formalism for constructing the amplitudes of three-dimensional topologically massive gauge theories and gravity. Inspired by recent developments in four dimensions, we construct the three-dimensional equivalent of x-variables, first defined in [1], for conserved matter currents coupled to topologically massive gauge bosons or gravitons. Using these, we bootstrap various matter-coupled gauge-theory and gravitational scattering amplitudes, and conjecture that topologically massive gauge theory and topologically massive gravity are related by the double copy. To motivate this idea further, we show explicitly that the Landau gauge propagator on the gauge theory side double copies to the de Donder gauge propagator on the gravity side.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Matteo Sacchi

Abstract We propose some new infra-red dualities for 2d$$ \mathcal{N} $$ N = (0, 2) theories. The first one relates a USp(2N) gauge theory with one antisymmetric chiral, four fundamental chirals and N Fermi singlets to a Landau-Ginzburg model of N Fermi and 6N chiral fields with cubic interactions. The second one relates SU(2) linear quiver gauge theories of arbitrary length N − 1 with the addition of N Fermi singlets for any non-negative integer N. They can be understood as a generalization of the duality between an SU(2) gauge theory with four fundamental chirals and a Landau-Ginzburg model of one Fermi and six chirals with a cubic interaction. We derive these dualities from already known 4d$$ \mathcal{N} $$ N = 1 dualities by compactifications on $$ {\mathbbm{S}}^2 $$ S 2 with suitable topological twists and we further test them by matching anomalies and elliptic genera. We also show how to derive them by iterative applications of some more fundamental dualities, in analogy with similar derivations for parent dualities in three and four dimensions.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Eric D’Hoker ◽  
Thomas T. Dumitrescu ◽  
Efrat Gerchkovitz ◽  
Emily Nardoni

Abstract Motivated by applications to soft supersymmetry breaking, we revisit the expansion of the Seiberg-Witten solution around the multi-monopole point on the Coulomb branch of pure SU(N) $$ \mathcal{N} $$ N = 2 gauge theory in four dimensions. At this point N − 1 mutually local magnetic monopoles become massless simultaneously, and in a suitable duality frame the gauge couplings logarithmically run to zero. We explicitly calculate the leading threshold corrections to this logarithmic running from the Seiberg-Witten solution by adapting a method previously introduced by D’Hoker and Phong. We compare our computation to existing results in the literature; this includes results specific to SU(2) and SU(3) gauge theories, the large-N results of Douglas and Shenker, as well as results obtained by appealing to integrable systems or topological strings. We find broad agreement, while also clarifying some lingering inconsistencies. Finally, we explicitly extend the results of Douglas and Shenker to finite N , finding exact agreement with our first calculation.


2004 ◽  
Vol 01 (04) ◽  
pp. 493-544 ◽  
Author(s):  
STEPHEN C. ANCO

A basic problem of classical field theory, which has attracted growing attention over the past decade, is to find and classify all nonlinear deformations of linear abelian gauge theories. The physical interest in studying deformations is to address uniqueness of known nonlinear interactions of gauge fields and to look systematically for theoretical possibilities for new interactions. Mathematically, the study of deformations aims to understand the rigidity of the nonlinear structure of gauge field theories and to uncover new types of nonlinear geometrical structures. The first part of this paper summarizes and significantly elaborates a field-theoretic deformation method developed in earlier work. Some key contributions presented here are, firstly, that the determining equations for deformation terms are shown to have an elegant formulation using Lie derivatives in the jet space associated with the gauge field variables. Secondly, the obstructions (integrability conditions) that must be satisfied by lowest-order deformations terms for existence of a deformation to higher orders are explicitly identified. Most importantly, a universal geometrical structure common to a large class of nonlinear gauge theory examples is uncovered. This structure is derived geometrically from the deformed gauge symmetry and is characterized by a covariant derivative operator plus a nonlinear field strength, related through the curvature of the covariant derivative. The scope of these results encompasses Yang–Mills theory, Freedman–Townsend theory, and Einstein gravity theory, in addition to their many interesting types of novel generalizations that have been found in the past several years. The second part of the paper presents a new geometrical type of Yang–Mills generalization in three dimensions motivated from considering torsion in the context of nonlinear sigma models with Lie group targets (chiral theories). The generalization is derived by a deformation analysis of linear abelian Yang–Mills Chern–Simons gauge theory. Torsion is introduced geometrically through a duality with chiral models obtained from the chiral field form of self-dual (2+2) dimensional Yang–Mills theory under reduction to (2+1) dimensions. Field-theoretic and geometric features of the resulting nonlinear gauge theories with torsion are discussed.


Sign in / Sign up

Export Citation Format

Share Document