FORMATION OF COMPOSITE HIGGS BOSONS FROM QUARK-ANTIQUARKS AT LOWER ENERGY SCALES

1990 ◽  
Vol 05 (15) ◽  
pp. 1205-1211 ◽  
Author(s):  
MAHIKO SUZUKI

We study how the simple predictions of the Nambu-Jona-Lasinio model of composite Higgs bosons are modified when quark interactions more singular than the nonderivative four-quark interaction are added. The t-quark mass is no longer restricted to ≳ 200 GeV, the simple mass relation between the t-quark and the scalar Higgs boson is lost, and the energy scale of the quark couplings can be chosen as low as we wish. Implications in experimental testability of this class of models are briefly discussed.

2017 ◽  
Vol 32 (26) ◽  
pp. 1750159 ◽  
Author(s):  
Wei Lu

We propose a Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies in the context of composite Higgs bosons. Standard model fermions are represented by algebraic spinors of six-dimensional binary Clifford algebra, while ternary Clifford algebra-related flavor projection operators control allowable flavor-mixing interactions. There are three composite electroweak Higgs bosons resulted from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three groups are determined by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu–Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the Large Hadron Collider, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Henning Bahl ◽  
Philip Bechtle ◽  
Sven Heinemeyer ◽  
Judith Katzy ◽  
Tobias Klingl ◽  
...  

Abstract The $$ \mathcal{CP} $$ CP structure of the Higgs boson in its coupling to the particles of the Standard Model is amongst the most important Higgs boson properties which have not yet been constrained with high precision. In this study, all relevant inclusive and differential Higgs boson measurements from the ATLAS and CMS experiments are used to constrain the $$ \mathcal{CP} $$ CP -nature of the top-Yukawa interaction. The model dependence of the constraints is studied by successively allowing for new physics contributions to the couplings of the Higgs boson to massive vector bosons, to photons, and to gluons. In the most general case, we find that the current data still permits a significant $$ \mathcal{CP} $$ CP -odd component in the top-Yukawa coupling. Furthermore, we explore the prospects to further constrain the $$ \mathcal{CP} $$ CP properties of this coupling with future LHC data by determining tH production rates independently from possible accompanying variations of the $$ t\overline{t}H $$ t t ¯ H rate. This is achieved via a careful selection of discriminating observables. At the HL-LHC, we find that evidence for tH production at the Standard Model rate can be achieved in the Higgs to diphoton decay channel alone.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Henning Bahl ◽  
Tim Stefaniak ◽  
Jonas Wittbrodt

Abstract The presence of charged Higgs bosons is a generic prediction of multiplet extensions of the Standard Model (SM) Higgs sector. Focusing on the Two-Higgs-Doublet-Model (2HDM) with type I and lepton-specific Yukawa sectors, we discuss the charged Higgs boson collider phenomenology in the theoretically and experimentally viable parameter space. While almost all existing experimental searches at the LHC target the fermionic decays of charged Higgs bosons, we point out that the bosonic decay channels — especially the decay into a non-SM-like Higgs boson and a W boson — often dominate over the fermionic channels. Moreover, we revisit two genuine BSM effects on the properties of the discovered Higgs boson — the charged Higgs contribution to the diphoton rate and the Higgs decay to two light Higgs bosons — and their implication for the charged Higgs boson phenomenology. As main result of the present paper, we propose five two-dimensional benchmark scenarios with distinct phenomenological features in order to facilitate the design of dedicated LHC searches for charged Higgs bosons decaying into a W boson and a light, non-SM-like Higgs boson.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Marco Niggetiedt

Abstract We follow up on our discussion of the exact quark-mass dependence of the Higgs-gluon form factor at three loops in QCD [1] and turn our attention to the closely related Higgs-photon form factor. Similarly to our previous work, we intend to examine the form factor for the decay of a Higgs-boson with variable mass into two photons at the three-loop level in QCD. The set of master integrals is known numerically due to prior work on the Higgs-gluon form factor and is exploited to obtain expansions around the threshold as well as in the high-energy limit. Our results may be utilised to derive the photonic decay rate of the Higgs-boson through next-to-next-to-leading order.


2016 ◽  
Vol 2016 (10) ◽  
Author(s):  
S. Borowka ◽  
N. Greiner ◽  
G. Heinrich ◽  
S.P. Jones ◽  
M. Kerner ◽  
...  

2011 ◽  
Vol 26 (29) ◽  
pp. 4945-4958 ◽  
Author(s):  
BORIS A. ARBUZOV ◽  
IVAN V. ZAITSEV

We apply Bogoliubov compensation principle to the gauge electroweak interaction. The nontrivial solution of compensation equations for anomalous three-boson gauge invariant effective interaction uniquely defines its form-factor and parameters of the theory including value of gauge electroweak coupling [Formula: see text] in satisfactory agreement with the experimental value. A possibility of spontaneous generation of effective four-fermion interaction of heavy quarks is demonstrated. This interaction defines an equation for a scalar bound state of heavy quarks which serve as a substitute for the elementary scalar Higgs doublet. As a result we calculate the t-quark mass mt = 177 GeV in satisfactory agreement with the experimental value. The results strongly support idea of [Formula: see text] condensate as a source of the electroweak symmetry breaking. The approach predicts heavy composite Higgs scalar MH ≃ 1800 GeV .


2018 ◽  
Vol 46 ◽  
pp. 1860058
Author(s):  
Ye Chen

Latest results of searches for heavy Higgs bosons in fermionic final states are presented using the CMS detector at the LHC. Results are based on pp collision data collected at centre-of-mass energies of 8 and 13 TeV which have been interpreted according to different extensions of the Standard Model such as MSSM, 2HDM, and NMSSM. These searches look for evidence of other scalar or pseudoscalar bosons, in addition to the observed SM-like 125 GeV Higgs boson, and set 95% confidence level upper limits in fermionic final states and benchmark models explored. The talk reviews briefly the major results obtained by the CMS Collaboration during Run I, and presents the most recent searches performed during Run II.


2019 ◽  
Author(s):  
Vitaly Kuyukov

This paper analyses a method of producing the Higgs mass via the gravitational field. This approach has become very popular in recent years, as the consideration of other forces do not help in solving the problem of mass hierarchy. Not understand the difference between scales of the standard model and Grand unification theory. Here, we present a heuristic mechanism which eliminated this difference. The idea is that the density of the condensate of the Higgs is increased so that it is necessary to take into account self gravitational potential energy of the Higgs boson. The result is as follows. The mass of the Higgs is directly proportional to the cell density of the Higgs bosons. Or else the mass of the Higgs is inversely proportional to the cell volume, which is the Higgs boson in the condensate. The most interesting dimension of this cell condensation is equal to the scale of Grand unification. This formula naturally combines the scale of the standard model and Grand unification through gravitational condensation.


2019 ◽  
Vol 64 (8) ◽  
pp. 714
Author(s):  
T. V. Obikhod ◽  
I. A. Petrenko

The problems of the Standard Model, as well as questions related to Higgs boson properties led to the need to model the ttH associated production and the Higgs boson decay to a top quark pair within the MSSM model. With the help of computer programs MadGraph, Pythia, and Delphes and using the latest kinematic cuts taken from experimental data obtained at the LHC, we have predicted the masses of MSSM Higgs bosons, A and H.


Sign in / Sign up

Export Citation Format

Share Document