CLASSICAL PERTURBATIONS FROM DECOHERENCE OF QUANTUM FLUCTUATIONS IN THE INFLATIONARY UNIVERSE

1990 ◽  
Vol 05 (28) ◽  
pp. 2311-2317 ◽  
Author(s):  
ROBERT BRANDENBERGER ◽  
RAYMOND LAFLAMME ◽  
MILAN MIJIĆ

The evolution of a scalar field interacting with an environment in the de Sitter phase of an inflationary Universe is studied. The environment is taken to be a second scalar field. It is shown that the coherence length of the quantum fluctuations rapidly decreases after the wavelength of the perturbation crosses the Hubble radius. Hence, the fluctuations can be interpreted as classical. This lends support to the usual derivation of the spectrum of density perturbations in inflationary Universe models.

1998 ◽  
Vol 13 (08) ◽  
pp. 1201-1211 ◽  
Author(s):  
Y. ENGINER ◽  
M. HORTAÇSU ◽  
N. ÖZDEMIR

Quantum fluctuations for a massless scalar field in the background metric of spherical implusive gravitational waves propagating through Minkowski and de Sitter spaces are investigated. It is shown that there exist finite fluctuations for de Sitter space.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Haidar Sheikhahmadi ◽  
Ali Aghamohammadi ◽  
Khaled Saaidi

During this work, using subtraction renormalization mechanism, zero point quantum fluctuations for bosonic scalar fields in a de-Sitter like background are investigated. By virtue of the observed value for spectral index,ns(k), for massive scalar field the best value for the first slow roll parameter,ϵ, is achieved. In addition, the energy density of vacuum quantum fluctuations for massless scalar field is obtained. The effects of these fluctuations on other components of the universe are studied. By solving the conservation equation, for some different examples, the energy density for different components of the universe is obtained. In the case which all components of the universe are in an interaction, the different dissipation functions,Q~i, are considered. The time evolution ofρDE(z)/ρcri(z)shows thatQ~=3γH(t)ρmhas the best agreement in comparison to observational data including CMB, BAO, and SNeIa data set.


1989 ◽  
Vol 04 (10) ◽  
pp. 2613-2625 ◽  
Author(s):  
AKIO HOSOYA ◽  
MASAHIRO MORIKAWA ◽  
KEIJI NAKAYAMA

An effective dynamics of a long wavelength part of an inflation in de Sitter space is derived in the form of the Langevin equation by regarding the remaining short wavelength part as a noise. Classical properties of the noise and the long wavelength part are investigated and their statistical correlations are derived. The formulation is applied to the generation of density perturbations. Here the interaction in the Langevin equation is shown to be indispensable as far as we disregard the singular contribution of the energy-momentum tensor correlation.


1992 ◽  
Vol 07 (09) ◽  
pp. 2033-2044 ◽  
Author(s):  
M. BASLER ◽  
B. KÄMPFER

A possible reheating mechanism in inflationary universe models is studied in some detail. Results are presented of numerical investigations of particle creation and corresponding reheating within a self-coupled scalar field model. By using the method of Hamiltonian diagonalization attention is devoted to the time development of the process and its parameter dependence. The effect of particle production is found to depend strongly on the anharmonicity of the potential around its minimum and on the amplitude of the oscillations of the scalar background field.


2005 ◽  
Vol 14 (05) ◽  
pp. 861-872 ◽  
Author(s):  
SERGIO DEL CAMPO ◽  
RAMÓN HERRERA ◽  
JOEL SAAVEDRA

In this article we study closed inflationary universe models proposed by Linde in a brane world cosmological context. In this scenario we determine and characterize the existence of a closed universe, in presence of one self-interacting scalar field with an inflationary stage. We have found that our model, which takes into account a Brane World Cosmology, is less restrictive than the one that uses standard Einstein's General Relativity cosmology.


2012 ◽  
Vol 12 ◽  
pp. 272-279
Author(s):  
HING-TONG CHO ◽  
KIN-WANG NG ◽  
I-CHIN WANG

We calculate quantum fluctuations of a free scalar field in the Schwarzschild-de Sitter space-time, adopting the planar coordinates that is pertinent to the presence of a black hole in an inflationary universe. In a perturbation approach, doing expansion in powers of a small black hole event horizon compared to the de Sitter cosmological horizon, we obtain the scalar power spectrum.


2013 ◽  
Vol 22 (08) ◽  
pp. 1350041 ◽  
Author(s):  
M. R. SETARE ◽  
M. J. S. HOUNDJO ◽  
V. KAMALI

In this paper, we study warm inflationary universe models in the context of a polytropic gas. We derive the characteristics of this model in slow-roll approximation and develop our model in two cases: (1) for a constant dissipative parameter Γ; (2) Γ as a function of scalar field ϕ. In these cases, we will obtain exact solution for the scalar field and Hubble parameter. We will also obtain explicit expressions for the tensor-scalar ratio R, scalar spectrum index ns and its running αs in slow-roll approximation.


2011 ◽  
Vol 2011 ◽  
pp. 1-3 ◽  
Author(s):  
Raj Bali ◽  
Laxmi Poonia

Inflationary scenario in locally rotationally symmetric (LRS) Bianchi Type II space-time with massless scalar field with flat potential is discussed. To get the deterministic solution in terms of cosmic time , we have assumed that the scale factor , that is, and  = constant where is effective potential and is Higg's field. We find that spatial volume increases with time and the model isotropizes for large value of under special condition. The Higg's field decreases slowly and tends to a constant value when . The model represents uniform expansion but accelerating universe and leads to de-Sitter type metric.


2005 ◽  
Vol 72 (2) ◽  
Author(s):  
Anne-Marie Barlow ◽  
Daniel Doherty ◽  
Elizabeth Winstanley
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document