STOCHASTIC DYNAMICS OF SCALAR FIELD IN THE INFLATIONARY UNIVERSE

1989 ◽  
Vol 04 (10) ◽  
pp. 2613-2625 ◽  
Author(s):  
AKIO HOSOYA ◽  
MASAHIRO MORIKAWA ◽  
KEIJI NAKAYAMA

An effective dynamics of a long wavelength part of an inflation in de Sitter space is derived in the form of the Langevin equation by regarding the remaining short wavelength part as a noise. Classical properties of the noise and the long wavelength part are investigated and their statistical correlations are derived. The formulation is applied to the generation of density perturbations. Here the interaction in the Langevin equation is shown to be indispensable as far as we disregard the singular contribution of the energy-momentum tensor correlation.

1990 ◽  
Vol 05 (28) ◽  
pp. 2311-2317 ◽  
Author(s):  
ROBERT BRANDENBERGER ◽  
RAYMOND LAFLAMME ◽  
MILAN MIJIĆ

The evolution of a scalar field interacting with an environment in the de Sitter phase of an inflationary Universe is studied. The environment is taken to be a second scalar field. It is shown that the coherence length of the quantum fluctuations rapidly decreases after the wavelength of the perturbation crosses the Hubble radius. Hence, the fluctuations can be interpreted as classical. This lends support to the usual derivation of the spectrum of density perturbations in inflationary Universe models.


1998 ◽  
Vol 13 (28) ◽  
pp. 2289-2293 ◽  
Author(s):  
B. C. PAUL ◽  
S. MUKHERJEE ◽  
G. P. SINGH ◽  
A. BEESHAM

The probability for quantum creation of an inflationary universe with a pair of black holes has been studied in semiclassical approximation with Hartle–Hawking boundary conditions, assuming a gravitational action which includes a quadratic term in the scalar curvature αR2, α being a constant. The action of the instanton responsible for creating such a universe, with a spatial section with S1×S2 topology, is seen to be less than that of a de Sitter S3 instanton, unless α<-1/(8Λ), where Λ is the cosmological constant. Since negative α implies a classical instability, the probability for production of primordial black holes seems to be suppressd in R2-theory.


2019 ◽  
Author(s):  
Yusuke Taniguchi ◽  
Atsushi Baba ◽  
Asobu Suzuki ◽  
Shinji Ejiri ◽  
Kazuyuki Kanaya ◽  
...  

Author(s):  
Z. Yousaf ◽  
M. Z. Bhatti

We explore the aspects of the electromagnetism on the stability of gravastar in a particular modified theory, i.e. [Formula: see text] where [Formula: see text], [Formula: see text] is the Ricci scalar and [Formula: see text] is the trace of energy–momentum tensor. We assume a spherically symmetric static metric coupled comprising of perfect fluid in the presence of electric charge. The purpose of this paper is to extend the results of [S. Ghosh, F. Rahaman, B. K. Guha and S. Ray, Phys. Lett. B 767 (2017) 380.] to highlight the effects of [Formula: see text] gravity in the formation of charged gravastars. We demonstrated the mathematical formulation, utilizing different equations of state, for the three respective regions (i.e. inner, shell, exterior) of the gravastar. We have matched smoothly the interior de Sitter and the exterior Reissner–Nordström metric at the hypersurface. At the end we extracted few conclusions by working on the physical features of the charged gravastar, mathematically and graphically.


2018 ◽  
Vol 175 ◽  
pp. 07013 ◽  
Author(s):  
Yusuke Taniguchi ◽  
Shinji Ejiri ◽  
Kazuyuki Kanaya ◽  
Masakiyo Kitazawa ◽  
Asobu Suzuki ◽  
...  

We measure correlation functions of the nonperturbatively renormalized energy-momentum tensor in Nf = 2 + 1 full QCD at finite temperature by applying the gradient flow method both to the gauge and quark fields. Our main interest is to study the conservation law of the energy-momentum tensor and to test whether the linear response relation is properly realized for the entropy density. By using the linear response relation we calculate the specific heat from the correlation function. We adopt the nonperturba-tively improved Wilson fermion and Iwasaki gauge action at a fine lattice spacing = 0:07 fm. In this paper the temperature is limited to a single value T ≃ 232 MeV. The u, d quark mass is rather heavy with mπ=mρ ≃ 0:63 while the s quark mass is set to approximately its physical value.


2018 ◽  
Vol 33 (34) ◽  
pp. 1850199 ◽  
Author(s):  
A. I. Keskin

In this study, we examine two models of the scalar field, that is, a normal scalar field and a tachyon scalar field in [Formula: see text] gravity to describe cosmic acceleration of the universe, where [Formula: see text], [Formula: see text] and [Formula: see text] are Ricci curvature scalar, trace of energy–momentum tensor and kinetic energy of scalar field [Formula: see text], respectively. Using the minimal-coupling Lagrangian [Formula: see text], for both the scalar models we obtain a viable cosmological system, where [Formula: see text] and [Formula: see text] are real constants. While a normal scalar field gives a system describing expansion from the deceleration to the late-time acceleration, tachyon field together with [Formula: see text] in the system produces a quintessential expansion which is very close to de Sitter point, where we find a new condition [Formula: see text] for inflation.


2020 ◽  
Vol 17 (03) ◽  
pp. 2050033
Author(s):  
M. R. Setare ◽  
M. Sahraee

In this paper, we obtain the effect of backreaction on the scale factor of the Friedmann–Lemaître–Robertson–Walker (FLRW) and de Sitter spaces. We consider a non-minimally coupled massive scalar field to the curvature scalar. For our purpose, we use the results of vacuum expectation values of energy–momentum tensor, which have been obtained previously. By substituting the quantum energy density into the Friedmann equation, we obtain the linear order perturbation of the scale factor. So, the effect of backreaction leads to the new scale factor.


Sign in / Sign up

Export Citation Format

Share Document