scholarly journals GRADED ALGEBRA AND NONCOMMUTATIVE GEOMETRY VERSION TO L–R SYMMETRIC MODEL

1995 ◽  
Vol 10 (06) ◽  
pp. 479-486
Author(s):  
H. B. BENAOUM

A left–right symmetric model based on graded Lie algebra and noncommutative geometry is constructed. In this approach, the two Higgs fields H R and H L — responsible for the first stage symmetry breaking — transform as [Formula: see text] and [Formula: see text] under SU (2) L , SU (2) R and U(1). Their vacuum expectation values happen to be equal. A bi-doublet ɸ with zero U(1) charge for the second stage is also obtained. Enlarging the Higgs sector with the introduction of the triplets <δ L,R > and singlet <δ0> make parity spontaneously broken at a mass higher than that of the standard charged gauge boson. A fixed value for the Weinberg angle [Formula: see text] and a simple relation between neutral gauge bosons masses [Formula: see text] are predicted.

2011 ◽  
Vol 26 (05) ◽  
pp. 873-909 ◽  
Author(s):  
M. BOUSSAHEL ◽  
N. MEBARKI

A classical gauge model based on the Lie group SU (3)L⊗ U (1)N with exotic quarks is reformulated within the formalism of nonassociative geometry associated with an L cycle. The N charges of the fermionic particles and the related parameter constraints are algebraic consequences and are uniquely determined. Moreover, the number of scalar particles is dictated by the nonassociativity of the geometry. As a byproduct of this formalism, the Weinberg angle θw, scalar, charged and neutral gauge boson masses, as well as the mixing angles, are derived. Furthermore, various expressions for the vector and axial couplings of the quarks and leptons with the neutral gauge bosons and lower bounds of the very heavy gauge bosons are obtained.


2015 ◽  
Vol 25 (3) ◽  
pp. 227
Author(s):  
Hoang Ngoc Long ◽  
Lam Phu An Huy ◽  
Tran Thanh Thuy ◽  
Ly Thi Tu Tran ◽  
Vu Thi Hoang Yen

We show that the mass matrix of electrically neutral gauge bosons in the recent proposed  model based on \(\mathrm{SU}(3)_C\otimes \mathrm{SU}(3)_L\otimes \mathrm{U}(1)_X\) group with three neutrino singlets [9] has two exact eigenvalues and corresponding eigenvectors. Hence the neutral non-Hermitian gauge boson \(X^0_\mu\) is properly determined.With extra vacuum expectation values of the Higgs fields, there are mixings among charged gauge bosons \(W^\pm\) and \(Y^\pm\) as well as amongneutral gauge bosons \(Z, Z'\) and \(X^0\). From the $W$ boson decay width, we get lower bound on  scale of the model about few TeVs.


2006 ◽  
Vol 21 (22) ◽  
pp. 4519-4541 ◽  
Author(s):  
COSMIN MACESANU ◽  
KAMESHWAR C. WALI

We present a general formalism based on the framework of noncommutative geometry, suitable to the study of the standard model of electroweak interactions, as well as that of more general gauge theories. Left- and right-handed chiral fields are assigned to two different sheets of space–time (a discretized version of Kaluza–Klein theory). Scalar Higgs fields find themselves treated on the same footing as the gauge fields, resulting in spontaneous symmetry breaking in a natural and predictable way. As a first test, we apply the formalism to the Standard Model, where one can predict the Higgs mass and the top Yukawa coupling. The results obtained for this case are similar with results obtained in alternate formulations. We then study the left–right symmetric model, where we show that this framework imposes interesting constraints on the type and coefficients of terms appearing in the Higgs potential.


2005 ◽  
Vol 20 (27) ◽  
pp. 6317-6326
Author(s):  
COSMIN MACESANU

Connes's ideeas provide a framework in which the Higgs fields appear as components of a generalized gauge connection. This leads to theories with predictive power in the Higgs sector (for example, one can show that spontaneous symmetry breaking arises in a natural way). We describe a realization of this formalism where the underlying manifold is a two-sheeted space-time. We show how our particular formulation works for the case of the Standard Model and the Left-Right Symmetric Model.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
P. Drechsel ◽  
G. Moortgat-Pick ◽  
G. Weiglein

AbstractThe particle discovered in the Higgs boson searches at the LHC with a mass of about 125 GeV is compatible within the present uncertainties with the Higgs boson predicted in the Standard Model (SM), but it could also be identified with one of the neutral Higgs bosons in a variety of beyond the SM (BSM) theories with an extended Higgs sector. The possibility that an additional Higgs boson (or even more than one) could be lighter than the state that has been detected at 125 GeV occurs generically in many BSM models and has some support from slight excesses that were observed above the background expectations in Higgs searches at LEP and at the LHC. The couplings between additional Higgs fields and the electroweak gauge bosons in BSM theories could be probed by model-independent Higgs searches at lepton colliders. We present a generator-level extrapolation of the limits obtained at LEP to the case of a future $$e^+e^-$$ e + e - collider, both for the search where the light Higgs boson decays into a pair of bottom quarks and for the decay-mode-independent search utilising the recoil method. We find that at the ILC with a centre-of-mass energy of 250 GeV, an integrated luminosity of 500 fb$$^{-1}$$ - 1 and polarised beams, the sensitivity to a light Higgs boson with reduced couplings to gauge bosons is improved by more than an order of magnitude compared to the LEP limits and goes much beyond the projected indirect sensitivity of the HL-LHC with 3000 fb$$^{-1}$$ - 1 from the rate measurements of the detected state at 125 GeV.


2006 ◽  
Vol 21 (03) ◽  
pp. 243-264 ◽  
Author(s):  
MÜGE BOZ

We study the explicit CP violation of the Higgs sector in the next-to-minimal supersymmetric model with a gauge singlet Higgs field. Our numerical predictions show that electric dipole moment of electron lies around the present experimental upper limits. The mass of the lightest Higgs boson is quite sensitive to the CP violating phases in the theory. It is observed that as the vacuum expectation value of the singlet gets higher values, CP violation increases.


Author(s):  
Naoyuki Haba ◽  
Yasuhiro Shimizu ◽  
Toshifumi Yamada

Abstract We present a model that gives a natural explanation to the charged lepton mass hierarchy and study the contributions to the electron and the muon $g-2$. In the model, we introduce lepton-flavor-dependent $U(1)_F$ symmetry and three additional Higgs doublets with $U(1)_F$ charges, to realize that each generation of charged leptons couples to one of the three additional Higgs doublets. The $U(1)_F$ symmetry is softly broken by $+1$ charges, and the smallness of the soft breaking naturally gives rise to the hierarchy of the Higgs vacuum expectation values, which then accounts for the charged lepton mass hierarchy. Since electron and muon couple to different scalar particles, each scalar contributes to the electron and the muon $g-2$ differently. We survey the space of parameters of the Higgs sector and find that there are sets of parameters that explain the muon $g-2$ discrepancy. On the other hand, we cannot find parameter sets that can explain the $g-2$ discrepancy within 2 $\sigma$. Here, the $U(1)_F$ symmetry suppresses charged lepton flavor violation.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Véronique Bernard ◽  
Sébastien Descotes-Genon ◽  
Luiz Vale Silva

Abstract We consider a left-right symmetric extension of the Standard Model where the spontaneous breakdown of the left-right symmetry is triggered by doublets. The electroweak ρ parameter is protected from large corrections in this Doublet Left-Right Model (DLRM), contrary to the triplet case. This allows in principle for more diverse patterns of symmetry breaking. We consider several constraints on the gauge and scalar sectors of DLRM: the unitarity of scattering processes involving gauge bosons with longitudinal polarisations, the radiative corrections to the muon ∆r parameter and the electroweak precision observables measured at the Z pole and at low energies. Combining these constraints within the frequentist CKMfitter approach, we see that the fit pushes the scale of left-right symmetry breaking up to a few TeV, while favouring an electroweak symmetry breaking triggered not only by the SU(2)L×SU(2)R bi-doublet, which is the case most commonly considered in the literature, but also by the SU(2)L doublet.


2007 ◽  
Vol 16 (05) ◽  
pp. 1437-1443
Author(s):  
AKINA KATO ◽  
TAKUYA MOROZUMI ◽  
NORIMI YOKOZAKI ◽  
SYN KYU KANG

Seesaw model is an attractive model because it may explain baryogenesis through leptogenesis and also may explain the small neutrino mass. The supersymmetric seesaw model may be more attractive because the naturalness problem is absent in supersymmetric theory. Recently, the higgs mass correction due to leptons and sleptons loops is computed.1 In this talk, we report on the preliminary results on the one loop corrections of leptons and sleptons loops to the effective action of Higgs sector for super symmetric seesaw model. Our results show that the corrections to the mass parameters for Higgs sector are proportional to the soft breaking parameters of supersymmetric seesaw model, while for the quartic couplings of Higgs fields, the corrections are suppressed by inverse powers of the right-handed neutrino mass.


2007 ◽  
Vol 16 (05) ◽  
pp. 1427-1436 ◽  
Author(s):  
SATORU KANEKO ◽  
HIDEYUKI SAWANAKA ◽  
TAKAYA SHINGAI ◽  
MORIMITSU TANIMOTO ◽  
KOICHI YOSHIOKA

A texture-zeros is an approach to reduce the number of free parameters in Yukawa couplings and it is one of the most attractive ones. In our paper, we discuss the origin of zero-structure in texture-zeros by S3 flavor symmetry approach. Some of electroweak doublet Higgs fields have vanishing vacuum expectation value (VEV) which leads to vanishing elements in quark and lepton mass matrices. Then, the structure of supersymmetric scalar potential is analyzed and Higgs fields have non-trivial S3 charges. As a prediction of our paper, a lower bound of a MNS matrix element, Ue3 ≥ 0.04, is obtained. The suppression of flavor-changing neutral currents (FCNC) mediated by the Higgs fields is discussed and lower bounds of the Higgs masses are derived.


Sign in / Sign up

Export Citation Format

Share Document