scholarly journals CONSTRAINTS ON THE ELECTROWEAK UNIVERSAL PARAMETERS AND THE TOP AND HIGGS MASSES FROM UPDATED LEP/SLC DATA

1995 ◽  
Vol 10 (33) ◽  
pp. 2553-2569 ◽  
Author(s):  
SEIJI MATSUMOTO

A global analysis is performed using the recent data from LEP and SLC. Constraints on the electroweak universal parameters (S, T, U) and on the masses of the top quark and Higgs boson within the standard model (SM) are investigated. The uncertainties due to the QCD and QED effective couplings, αs(mz) and , [Formula: see text] are examined in detail. Even though the mean value of S is increased to be consistent with zero, the naive Technicolor models are still disfavored due to its reduced error. Within the SM, we find the 90% CL constraints; 133 GeV<mt<190 GeV and 10 GeV<mH< 440 GeV for αs(mz)=0.116 and [Formula: see text]. The experimental constraints on the ZbLbL vertex form factor, [Formula: see text] play an important role in disfavoring the region of large mt(mt~200GeV) and large mH(mH~1000 GeV). If mt is precisely known, the present electroweak data give a rather strict upper bound on the Higgs mass, mH<140(300) GeV at 95% CL, for mt=160(175) GeV and for the above αs(mz) and [Formula: see text].

2019 ◽  
Vol 64 (8) ◽  
pp. 714
Author(s):  
T. V. Obikhod ◽  
I. A. Petrenko

The problems of the Standard Model, as well as questions related to Higgs boson properties led to the need to model the ttH associated production and the Higgs boson decay to a top quark pair within the MSSM model. With the help of computer programs MadGraph, Pythia, and Delphes and using the latest kinematic cuts taken from experimental data obtained at the LHC, we have predicted the masses of MSSM Higgs bosons, A and H.


1990 ◽  
Vol 05 (16) ◽  
pp. 1259-1264 ◽  
Author(s):  
JORGE L. LOPEZ ◽  
D.V. NANOPOULOS

We examine the Higgs sector of the minimal supersymmetric extension of the standard model. The requirement of perturbative unification combined with the recent LEP data on Higgs boson searches, excludes substantial regions of parameter space. We find that only 0.42 ≤ tan β≲0.76 and tan β≳1.30 are the allowed values for tan β=υ2/υ1. We also determine the absolute lower bound on the lightest Higgs mass to be ≈8 GeV. We conclude that improved lower bounds on the top quark mass and/or the standard model Higgs boson mass will impose yet more stringent constraints on the model. These results clearly favor tan β>1, in agreement with N=1 supergravity or superstring-inspired models.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Henning Bahl ◽  
Philip Bechtle ◽  
Sven Heinemeyer ◽  
Judith Katzy ◽  
Tobias Klingl ◽  
...  

Abstract The $$ \mathcal{CP} $$ CP structure of the Higgs boson in its coupling to the particles of the Standard Model is amongst the most important Higgs boson properties which have not yet been constrained with high precision. In this study, all relevant inclusive and differential Higgs boson measurements from the ATLAS and CMS experiments are used to constrain the $$ \mathcal{CP} $$ CP -nature of the top-Yukawa interaction. The model dependence of the constraints is studied by successively allowing for new physics contributions to the couplings of the Higgs boson to massive vector bosons, to photons, and to gluons. In the most general case, we find that the current data still permits a significant $$ \mathcal{CP} $$ CP -odd component in the top-Yukawa coupling. Furthermore, we explore the prospects to further constrain the $$ \mathcal{CP} $$ CP properties of this coupling with future LHC data by determining tH production rates independently from possible accompanying variations of the $$ t\overline{t}H $$ t t ¯ H rate. This is achieved via a careful selection of discriminating observables. At the HL-LHC, we find that evidence for tH production at the Standard Model rate can be achieved in the Higgs to diphoton decay channel alone.


Universe ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 45
Author(s):  
Christof Wetterich

We compute the effective potential for scalar fields in asymptotically safe quantum gravity. A scaling potential and other scaling functions generalize the fixed point values of renormalizable couplings. The scaling potential takes a non-polynomial form, approaching typically a constant for large values of scalar fields. Spontaneous symmetry breaking may be induced by non-vanishing gauge couplings. We strengthen the arguments for a prediction of the ratio between the masses of the top quark and the Higgs boson. Higgs inflation in the standard model is unlikely to be compatible with asymptotic safety. Scaling solutions with vanishing relevant parameters can be sufficient for a realistic description of particle physics and cosmology, leading to an asymptotically vanishing “cosmological constant” or dynamical dark energy.


2020 ◽  
Vol 102 (5) ◽  
Author(s):  
Joshua Davies ◽  
Ramona Gröber ◽  
Andreas Maier ◽  
Thomas Rauh ◽  
Matthias Steinhauser

2000 ◽  
Vol 15 (16) ◽  
pp. 2605-2611 ◽  
Author(s):  
TOMOMI OHGAKI

We demonstrate a measurement of the Higgs boson mass by the method of energy scanning at photon–photon colliders, using the high energy edge of the photon spectrum. With an integrated luminosity of 50 fb-1 it is possible to measure the standard model Higgs mass to within 110 MeV in photon–photon collisions for mh=100 GeV. As for the total width of the Higgs boson, the statistical error ΔΓh/Γh SM=0.06 is expected for mh=100 GeV, if both Γ(h→γγ) and [Formula: see text] are fixed at the predicted standard model value.


2019 ◽  
Vol 201 ◽  
pp. 04003 ◽  
Author(s):  
Oksana A. Koval ◽  
Igor R. Boyko ◽  
Nazim Huseynov

Higgs boson production in association with a single top quark is the only process sensitive to the sign of the Top Yukawa coupling. We present a Monte-Carlo study of the pp → tHqb process and discuss the esperimental signatures that can help to discover it at the LHC. Two scenarios have been considered, the Standard Model case and the Inverted Top Coupling scenario.


2011 ◽  
Vol 26 (25) ◽  
pp. 1869-1879 ◽  
Author(s):  
H. CARDENAS ◽  
J. DUARTE ◽  
J. ALEXIS RODRIGUEZ

The D0 experiment has reported a direct search for a charged Higgs boson produced by [Formula: see text] annihilation and decaying to [Formula: see text] final state, in the 180≤MH+≤300 GeV mass range. The analysis has led to upper limits on the production cross-section in the framework of the two-Higgs doublet model types I, II and III. We compare the predictions of two different scenarios in the framework of the two-Higgs doublet type III to the cross-section limits reported by D0 collaboration, and we obtain constraints on the charged Higgs mass, for the case when the charged Higgs mass is bigger than the top quark mass. Also, searches for the charged Higgs boson with a mass smaller than top quark mass are considered, we discuss the possible limits on the charged Higgs boson mass obtained from measurements of the ratio [Formula: see text] within the two-Higgs doublet model type III.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
P. Slavich ◽  
S. Heinemeyer ◽  
E. Bagnaschi ◽  
H. Bahl ◽  
M. Goodsell ◽  
...  

AbstractPredictions for the Higgs masses are a distinctive feature of supersymmetric extensions of the Standard Model, where they play a crucial role in constraining the parameter space. The discovery of a Higgs boson and the remarkably precise measurement of its mass at the LHC have spurred new efforts aimed at improving the accuracy of the theoretical predictions for the Higgs masses in supersymmetric models. The “Precision SUSY Higgs Mass Calculation Initiative” (KUTS) was launched in 2014 to provide a forum for discussions between the different groups involved in these efforts. This report aims to present a comprehensive overview of the current status of Higgs-mass calculations in supersymmetric models, to document the many advances that were achieved in recent years and were discussed during the KUTS meetings, and to outline the prospects for future improvements in these calculations.


Sign in / Sign up

Export Citation Format

Share Document