scholarly journals MATRIX MODELS OF TWO-DIMENSIONAL GRAVITY AND DISCRETE TODA THEORY

1996 ◽  
Vol 11 (22) ◽  
pp. 1797-1806 ◽  
Author(s):  
MASATO HISAKADO ◽  
MIKI WADATI

Recursion relations for orthogonal polynomials, arising in the study of one-matrix model of two-dimensional gravity, are shown to be equivalent to the equations of the Toda-chain hierarchy supplemented by additional Virasoro constraints. This is the case without the double scaling limit. A discrete time variable to the matrix model is introduced. The discrete time dependent partition functions are given by τ functions which satisfy the discrete Toda molecule equation. Further the relations between the matrix model and the discrete time Toda theory are discussed.

2004 ◽  
Vol 19 (03) ◽  
pp. 361-370 ◽  
Author(s):  
P. VALTANCOLI

We propose an action for gravity on a fuzzy sphere, based on a matrix model. We find striking similarities with an analogous model of two-dimensional gravity on a noncommutative plane, i.e. the solution space of both models is spanned by pure U(2) gauge transformations acting on the background solution of the matrix model, and there exist deformations of the classical diffeomorphisms which preserve the two-dimensional noncommutative gravity actions.


1991 ◽  
Vol 06 (15) ◽  
pp. 1387-1396
Author(s):  
FREDDY PERMANA ZEN

Universality with respect to triangulations is investigated in the Hermitian one-matrix model approach to 2-D quantum gravity for a potential containing both even and odd terms, [Formula: see text]. With the use of analytical and numerical calculations, I find that the universality holds and the model describes pure gravity, which leads in the double scaling limit to coupled equations of Painlevé type.


2018 ◽  
Vol 33 (30) ◽  
pp. 1830029 ◽  
Author(s):  
Robbert Dijkgraaf ◽  
Edward Witten

This note aims to provide an entrée to two developments in two-dimensional topological gravity — that is, intersection theory on the moduli space of Riemann surfaces — that have not yet become well known among physicists. A little over a decade ago, Mirzakhani discovered[Formula: see text] an elegant new proof of the formulas that result from the relationship between topological gravity and matrix models of two-dimensional gravity. Here we will give a very partial introduction to that work, which hopefully will also serve as a modest tribute to the memory of a brilliant mathematical pioneer. More recently, Pandharipande, Solomon, and Tessler3 (with further developments in Refs. 4–6) generalized intersection theory on moduli space to the case of Riemann surfaces with boundary, leading to generalizations of the familiar KdV and Virasoro formulas. Though the existence of such a generalization appears natural from the matrix model viewpoint — it corresponds to adding vector degrees of freedom to the matrix model — constructing this generalization is not straightforward. We will give some idea of the unexpected way that the difficulties were resolved.


1992 ◽  
Vol 07 (01) ◽  
pp. 43-54 ◽  
Author(s):  
A. M. SEMIKHATOV

Virasoro constraints on integrable hierarchies and their consequences are studied using the formalism of dressing operators. The dressing-operator description allows one to perform entirely in intrinsically hierarchical terms a double-scaling limit which takes "discrete" (lattice) Virasoro-constrained hierarchies into continuum hierarchies subjected to their own Virasoro constraints. Certain equations derived as consequences of the constraints suggest an interpretation as recursion/loop equations, thus establishing a link with the field-theoretic description. Such a correspondence with two-dimensional gravity-coupled theories, which does not require going through the matrix formulation, is conjectured to hold for general integrable hierarchies of the r-matrix type (appropriately constrained). The example considered explicitly is that of the Virasoro-constrained Toda hierarchy which undergoes a scaling into the Virasoro-constrained KP hierarchy, which in turn can be reduced to N-KdV hierarchies subjected to a subset of the KP Virasoro constraints. The dressing-operator formulation also facilitates the analysis of symmetry algebras of constrained hierarchies. The Kac–Moody sl (N) algebra is identified as a symmetry of the N-KdV hierarchy, while for the Virasoro-constrained KP hierarchy its symmetry algebra is related to a member of the family of the W∞(J) algebras. In the supersymmetric case this method allows one to impose super-Virasoro constraints on the super-KP hierarchy consistently with all the SKP flows.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Ashoke Sen

Abstract In a recent paper, Balthazar, Rodriguez and Yin found remarkable agreement between the one instanton contribution to the scattering amplitudes of two dimensional string theory and those in the matrix model to the first subleading order. The comparison was carried out numerically by analytically continuing the external energies to imaginary values, since for real energies the string theory result diverges. We use insights from string field theory to give finite expressions for the string theory amplitudes for real energies. We also show analytically that the imaginary parts of the string theory amplitudes computed this way reproduce the full matrix model results for general scattering amplitudes involving multiple closed strings.


1991 ◽  
Vol 06 (15) ◽  
pp. 2743-2754 ◽  
Author(s):  
NORISUKE SAKAI ◽  
YOSHIAKI TANII

The radius dependence of partition functions is explicitly evaluated in the continuum field theory of a compactified boson, interacting with two-dimensional quantum gravity (noncritical string) on Riemann surfaces for the first few genera. The partition function for the torus is found to be a sum of terms proportional to R and 1/R. This is in agreement with the result of a discretized version (matrix models), but is quite different from the critical string. The supersymmetric case is also explicitly evaluated.


1993 ◽  
Vol 08 (13) ◽  
pp. 1205-1214 ◽  
Author(s):  
K. BECKER ◽  
M. BECKER

We present the solution of the discrete super-Virasoro constraints to all orders of the genus expansion. Integrating over the fermionic variables we get a representation of the partition function in terms of the one-matrix model. We also obtain the non-perturbative solution of the super-Virasoro constraints in the double scaling limit but do not find agreement between our flows and the known supersymmetric extensions of KdV.


1992 ◽  
Vol 07 (21) ◽  
pp. 5337-5367 ◽  
Author(s):  
L. ALVAREZ-GAUMÉ ◽  
H. ITOYAMA ◽  
J.L. MAÑES ◽  
A. ZADRA

We propose a discrete model whose continuum limit reproduces the string susceptibility and the scaling dimensions of (2, 4m) minimal superconformal models coupled to 2D supergravity. The basic assumption in our presentation is a set of super-Virasoro constraints imposed on the partition function. We recover the Neveu-Schwarz and Ramond sectors of the theory, and we are also able to evaluate all planar loop correlation functions in the continuum limit. We find evidence to identify the integrable hierarchy of nonlinear equations describing the double scaling limit as a supersymmetric generalization of KP studied by Rabin.


1992 ◽  
Vol 07 (11) ◽  
pp. 937-953 ◽  
Author(s):  
SUMIT R. DAS ◽  
AVINASH DHAR ◽  
GAUTAM MANDAL ◽  
SPENTA R. WADIA

We explore consequences of W-infinity symmetry in the fermionic field theory of the c=1 matrix model. We derive exact Ward identities relating correlation functions of the bilocal operator. These identities can be expressed as equations satisfied by the effective action of a three-dimensional theory and contain non-perturbative information about the model. We use these identities to calculate the two-point function of the bilocal operator in the double scaling limit. We extract the operator whose two-point correlator has a single pole at an (imaginary) integer value of the energy. We then rewrite the W-infinity charges in terms of operators in the matrix model and use this to derive constraints satisfied by the partition function of the matrix model with a general time dependent potential.


Sign in / Sign up

Export Citation Format

Share Document