The Superstring Propagator and the Signature of Space-Time

1997 ◽  
Vol 12 (14) ◽  
pp. 987-998 ◽  
Author(s):  
M. D. Pollock

The Faddeev (Newton–Wigner) propagator K for the heterotic superstring theory is derived from the Wheeler–DeWitt equation for the wave function of the Universe Ψ, obtained in the four-dimensional (mini-superspace) Friedmann space-time ds2=dt2-a2(t)dx2, after reduction from the ten-action. The effect of higher-derivative terms ℛ2 is to break the local invariance under time reparametrization to a global symmetry t→λt, and consequently there are no ghost or gauge-fixing contributions, a functional integral over the (constant) Lagrange multiplier λ being sufficient to enforce the Hamiltonian constraint implicitly. After Wick rotation of the time, [Formula: see text], the only physically acceptable solution for K decreases exponentially on the Planck time-scale ~ t P , explaining from the quantum cosmological viewpoint why the signature of space-time is Lorentzian rather than Euclidean. This is analogous to the case of the (two-dimensional) free relativistic scalar particle, discussed recently by Redmount and Suen, who found that the propagator decreases exponentially outside the light-cone on the scale of the Compton wavelength of the particle (in accordance with the Heisenberg indeterminacy principle). These two seemingly different forms of acausality are thus physically excluded in the same way. The propagator for the Schwarzschild black hole of mass M is also obtained from the Schrödinger equation for the wave function on the apparent horizon, due to Tomimatsu, and the Hawking temperature T H =(8π M)-1 is derived from the Euclidean form of this equation.

1997 ◽  
Vol 12 (16) ◽  
pp. 1127-1130 ◽  
Author(s):  
M. D. Pollock

By demanding the existence of a globally invariant ground-state solution of the Wheeler–De Witt equation (Schrödinger equation) for the wave function of the Universe Ψ, obtained from the heterotic superstring theory, in the four-dimensional Friedmann space-time, we prove that the cosmological vacuum energy has to be zero.


1992 ◽  
Vol 07 (25) ◽  
pp. 6421-6430 ◽  
Author(s):  
M.D. POLLOCK

The semi-classical limit of the compactified, heterotic superstring theory is examined, including the effects of higher-derivative terms [Formula: see text] in the effective Lagrangian. The total wave-function Ψ obeys a Schrödinger equation in the mini-superspace ds2=dt2−e2α(t)dx2, the canonical coordinates being the position α and the velocity (Hubble parameter) [Formula: see text], while the cosmic time coincides with the parameter introduced by Tomonaga, ∂/∂σ≡∂/∂t≡ξ∂/∂α. The wave function describing the matter, Ψ m , also obeys a linear Schrödinger equation. The relevance of this result to the problem of non-locality in quantum mechanics is discussed.


1992 ◽  
Vol 07 (08) ◽  
pp. 653-658 ◽  
Author(s):  
SUBENOY CHAKRABORTY

The wave function following the Hartle-Hawking (HH) no-boundary proposal is evaluated in five-dimensional space-time with topology of the four space S1×S3, generalizing the concept of microsuperspace. The functional integral in the expression for the wave function is simplified to an ordinary integration of one variable and is evaluated by the method of steepest-descent.


2006 ◽  
Vol 21 (02) ◽  
pp. 373-404 ◽  
Author(s):  
M. D. POLLOCK

The quartic higher-derivative gravitational terms [Formula: see text] in the heterotic-superstring effective Lagrangian [Formula: see text], defined from the Riemann ten-tensor [Formula: see text], are expanded, after reduction to the conformally-flat physical D-space gij, in terms of the Ricci tensor Rij and scalar R. The resulting quadratic term [Formula: see text] is tachyon-free and agrees exactly with the prediction from global supersymmetry in the nonlinear realization of Volkov and Akulov of the flat-space, quadratic fermionic Lagrangian [Formula: see text] for a massless Dirac or Weyl spinor, only when D = 4, assuming the Einstein equation [Formula: see text] for the energy–momentum tensor. This proves that the heterotic superstring has to be reduced from ten to four dimensions if supersymmetry is to be correctly incorporated into the theory, and it rules out the bosonic string and type-II superstring, for which [Formula: see text] has the different a priori forms ±(R2-4RijRij) derived from [Formula: see text], which also contain tachyons (that seem to remain after the inclusion of a further contribution to [Formula: see text] from [Formula: see text]). The curvature of space–time introduces a mass into the Dirac equation, [Formula: see text], while quadratic, higher-derivative terms [Formula: see text] make an additional contribution to the Einstein equations, these two effects causing a difference between [Formula: see text] and [Formula: see text] on the one hand, and the predictions from [Formula: see text] and [Formula: see text] on the other. The quartic terms [Formula: see text] still possess some residual symmetry, however, enabling us to estimate the radius-squared of the internal six-dimensional space [Formula: see text] in units of the Regge slope-parameter α′ as B r ≈ 1.75, indicating that compactification occurs essentially at the Planck era, due to quantum mechanical processes, when the action evaluated within the causal horizon is S h ~ 1. This symmetry is also discussed with regard to the zero-action hypothesis. The dimensionality D = 4 of space–time is rederived from the Wheeler–DeWitt equation (Schrödinger equation) of quantum cosmology in the mini-superspace approximation, by demanding invariance and positive-semi-definiteness of the potential [Formula: see text] under Wick rotation of the time coordinate, which also determines the three-space to be flat, so that K = 0, and again involves the nonlinearity of gravitation.


2019 ◽  
Author(s):  
Vitaly Kuyukov
Keyword(s):  

Holographic wave function and space-time


2021 ◽  
Author(s):  
Deep Bhattacharjee ◽  
Sanjeevan Singha Roy

Higher dimensions are impossible to visualize as the size of dimension varies inversely proportional to its level. The more the dimension ranges, the least its size. We are a set of points living in a particular point of space and a particular frame of time. i.e, we live in space-time. The space has more dimensions that meets the human eye. We are living in a world of hyper-space. Our world being a smaller dimension is floating in higher dimensions. The quest for the visually of higher dimensions has been a fantasy to mankind but this aspect of nature is completely locked. We can transform dimensions i.e., from higher to lower dimensions, or from lower to higher dimensions, but only through mathematics. The relative notion of mathematics helps us to do the thing, which is perhaps impossible in the experimental part of physical reality. Humans being an element of 3 Dimensions – length, breath, height can only perceive one higher dimensions, that is space-time. but beyond that the notion of dimension itself changes. The dimensions got curled up in every intersection of the coordinates of space in such a way that the higher dimensions remain stable to us. But in reality it is highly unstable. In the higher dimensions, above 4, the space is tearing apart and joining again spontaneously, but the tearing portion itself covered by 2 dimensional Branes which acts as a stabilizer for the unstable dimensions. Dimensions will get smaller and smaller with the space-time interwoven in it. But at Planks length that is 10^-33 meter, the notion of space-time itself breaks down thereby making impossible for the higher dimensions to coexist along with space. Without space, there will be no identity of any dimension. The space itself is the fabric for the milestone of residing higher dimensions. Imagine our room, which is 3 dimensional. But what is there inside the room. The space and of course the time. Space-time being a totally separate entity is not quite separate when compared with other dimensions because it makes the residing place for the higher dimensions or the hyperspace itself. We all are confined within a lower dimensional world within a randomness of higher dimensions. Time being alike like space is an arrow which has the capability of slicing space into different forms. Thereby taking a snapshot of our every nano-second we vibrate within space-time. As each slice of time represents each slice of space, similarly each slice of space represents each slice of time. The nature of space-time is beyond human consciousness. It is the identity by which we breathe, we play, we survive. It is the whole localization of species that encompasses itself with space thereby making space-time a relative quantity depending upon the reference frame. The only thing that can encompass space-time or even change the relative definition of space-time is the speed, the speed far beyond the speed of light. The more the speed, the less the array of time flows. Space-time being an invisible entity makes the other dimensions visible residing in it only into the level of 3, that is l, b, h. After that there is a infamous structure formed by the curling of higher dimensions called CALABI-YAU manifold. This manifold depicts the usual nature of the dimensional quadrants of the higher order by containing a number of small spherical spheres inside it. The mathematics of string theory is still unable to solve the genus and the containing spheres of the manifold which can be the ultimate quest for the hidden dimensions. Hidden, as, the higher dimensions are hidden from human perspective of macro level but if we probe deeper into the fabric of the space-time of General Relativity then we will find the 5th dimension according to the Kaluza-Klein theory. And if we probe even deeper into it at the perspective of string theory we will be amazed to see the real nature of quantum world. They are so marvelously beautiful, they contain so many forms of higher dimensions ranging from 6 to 10. And even many more of that, but we are still not sure about it where they may exist in a ghost state. After all, the quantum nature is far more beautiful that one can even imagine with a full faze of weirdness.


2007 ◽  
Vol 22 (13) ◽  
pp. 2441-2459 ◽  
Author(s):  
DIMITRI POLYAKOV

We observe and study new nonlinear global space–time symmetries of the full ghost + matter action of RNS superstring theory. We show that these surprising new symmetries are generated by the special worldsheet currents (physical vertex operators) of RNS superstring theory, violating the equivalence of superconformal ghost pictures. We review the questions of BRST-invariance and nontriviality of picture-dependent vertex operators and show their relation to hidden space–time symmetries and hidden space–time dimensions. In particular, we relate the space–time transformations, induced by picture-dependent currents, to the symmetries observed in the 2T physics approach.


1997 ◽  
Vol 12 (23) ◽  
pp. 1699-1708 ◽  
Author(s):  
S. I. Kruglov

A model of a scalar particle in (2+1)-dimensional space with an internal structure in external electromagnetic fields is considered. Exact solutions of the equation for such scalar particle were obtained in the field of a plane electromagnetic wave with the arbitrary polarization and in the quantized electromagnetic field of the linearly polarized wave. The relativistic coherent states of the particle in the field of n photons were constructed. When the photon number goes to infinity, this wave function transforms to the solution corresponding to the external classical electromagnetic wave.


2007 ◽  
Vol 22 (29) ◽  
pp. 5301-5323 ◽  
Author(s):  
DIMITRI POLYAKOV

We study the hierarchy of hidden space–time symmetries of noncritical strings in RNS formalism, realized nonlinearly. Under these symmetry transformations the variation of the matter part of the RNS action is canceled by that of the ghost part. These symmetries, referred to as the α-symmetries, are induced by special space–time generators, violating the equivalence of ghost pictures. We classify the α-symmetry generators in terms of superconformal ghost cohomologies Hn ~ H-n-2(n≥0) and associate these generators with a chain of hidden space–time dimensions, with each ghost cohomology Hn ~ H-n-2 "contributing" an extra dimension. Namely, we show that each ghost cohomology Hn ~ H-n-2 of noncritical superstring theory in d-dimensions contains d+n+1 α-symmetry generators and the generators from Hk ~ H-k-2, 1≤k ≤n, combined together, extend the space–time isometry group from the naive SO (d, 2) to SO (d+n, 2). In the simplest case of n = 1 the α-generators are identified with the extra symmetries of the 2T-physics formalism, also known to originate from a hidden space–time dimension.


Sign in / Sign up

Export Citation Format

Share Document