scholarly journals 1+1 DIMENSIONAL NCOS AND ITS U(N) GAUGE THEORY DUAL

2001 ◽  
Vol 16 (05) ◽  
pp. 922-935 ◽  
Author(s):  
IGOR R. KLEBANOV ◽  
JUAN MALDACENA

We study some aspects of open string theories on D-branes with critical electric fields. We show that the massless open string modes that move in the direction of the electric field decouple. In the 1+1 dimensional case the dual theory is U(N) SYM with electric flux, and the decoupling of massless open strings is dual to the decoupling of the U(1) degrees of freedom. We also show that, if the direction along the electric field is compact, then there are finite energy winding closed string modes. They are dual to Higgs branch excitations of the SYM theory, and their energetics works accordingly. These properties provide new non-trivial evidence for the duality.

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Jaume Gomis ◽  
Ziqi Yan ◽  
Matthew Yu

Abstract We uncover a Kawai-Lewellen-Tye (KLT)-type factorization of closed string amplitudes into open string amplitudes for closed string states carrying winding and momentum in toroidal compactifications. The winding and momentum closed string quantum numbers map respectively to the integer and fractional winding quantum numbers of open strings ending on a D-brane array localized in the compactified directions. The closed string amplitudes factorize into products of open string scattering amplitudes with the open strings ending on a D-brane configuration determined by closed string data.


2015 ◽  
Vol 24 (02) ◽  
pp. 1550015 ◽  
Author(s):  
Richa Kapoor ◽  
Supriya Kar ◽  
Deobrat Singh

We investigate an effective torsion curvature in a second-order formalism underlying a two-form world-volume dynamics in a D5-brane. In particular, we consider the two form in presence of a background (open string) metric in a U(1) gauge theory. Interestingly the formalism may be viewed via a noncoincident pair of [Formula: see text]-brane with a global Nereu–Schwarz (NS) two form on an anti-brane and a local two form on a brane. The energy–momentum tensor is computed in the six-dimensional (6D) conformal field theory (CFT). It is shown to source a metric fluctuation on a vacuum created pair of [Formula: see text]-brane at a cosmological horizon by the two-form quanta in the gauge theory. The emergent gravity scenario is shown to describe a low-energy (perturbative) string vacuum in 6D with a nonperturbative (NP) quantum correction by a lower (p < 5) dimensional Dp-brane or an anti-brane in the formalism. A closed string exchange between a pair of [Formula: see text]-brane, underlying a closed/open string duality, is argued to describe the Einstein vacuum in a low-energy limit. We obtain topological de Sitter (TdS) and Schwarzschild brane universe in six dimensions. The brane/anti-brane geometries are analyzed to explore some of their characteristic and thermal behaviors in presence of the quantum effects. They reveal an underlying nine-dimensional type IIA and IIB superstring theories on S1.


2002 ◽  
Vol 17 (04) ◽  
pp. 237-243 ◽  
Author(s):  
DAVOUD KAMANI

In this paper we study the noncommutative description of the DBI Lagrangian and its T-dual counterpart. We restrict the freedoms of the noncommutativity parameters of these Lagrangians. Therefore the noncommutativity parameter, the effective metric, the effective coupling constant of the string and the extra modulus [Formula: see text] of the effective T-dual theory, can be expressed in terms of the closed string variables g, B, gs and the noncommutativity parameter of the effective theory of open string.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Harold Erbin ◽  
Carlo Maccaferri ◽  
Martin Schnabl ◽  
Jakub Vošmera

Abstract We study generic properties of string theory effective actions obtained by classically integrating out massive excitations from string field theories based on cyclic homotopy algebras of A∞ or L∞ type. We construct observables in the UV theory and we discuss their fate after integration-out. Furthermore, we discuss how to compose two subsequent integrations of degrees of freedom (horizontal composition) and how to integrate out degrees of freedom after deforming the UV theory with a new consistent interaction (vertical decomposition). We then apply our general results to the open bosonic string using Witten’s open string field theory. There we show how the horizontal composition can be used to systematically integrate out the Nakanishi-Lautrup field from the set of massless excitations, ending with a non-abelian A∞-gauge theory for just the open string gluon. Moreover we show how the vertical decomposition can be used to construct effective open-closed couplings by deforming Witten OSFT with a tadpole given by the Ellwood invariant. Also, we discuss how the effective theory controls the possibility of removing the tadpole in the microscopic theory, giving a new framework for studying D-brane deformations induced by changes in the closed string background.


2007 ◽  
Vol 22 (02) ◽  
pp. 107-117 ◽  
Author(s):  
B. SATHIAPALAN

The loop variable technique (for open strings in flat space) is a gauge-invariant generalization of the renormalization group method for obtaining equations of motion. Unlike the beta functions, which are only proportional to the equations of motion, here it gives the full equation of motion. In an earlier paper, a technique was described for adapting this method to open strings in gravitational backgrounds. However, unlike the flat space case, these equations cannot be derived from an action and are therefore not complete. This is because there are ambiguities in the method that involve curvature couplings that cannot be fixed by appealing to gauge invariance alone but need a more complete treatment of the closed string background. An indirect method to resolve these ambiguities is to require symmetricity of the second derivatives of the action. In general this will involve modifying the equations by terms with arbitrarily high powers of curvature tensors. This is illustrated for the massive spin-two field. It is shown that in the special case of an AdS or dS background, the exact action can easily be determined in this way.


2007 ◽  
Vol 22 (34) ◽  
pp. 2549-2563 ◽  
Author(s):  
ABHISHEK AGARWAL

Various recently developed connections between supersymmetric Yang–Mills theories in four dimensions and two-dimensional integrable systems serve as crucial ingredients in improving our understanding of the AdS/CFT correspondence. In this review, we highlight some connections between superconformal four-dimensional Yang–Mills theory and various integrable systems. In particular, we focus on the role of Yangian symmetries in studying the gauge theory dual of closed string excitations. We also briefly review how the gauge theory connects to Calogero models and open quantum spin chains through the study of the gauge theory duals of D3 branes and open strings ending on them. This invited review is based on a seminar given at the Institute of Advanced Study, Princeton.


1991 ◽  
Vol 06 (27) ◽  
pp. 2483-2496
Author(s):  
GREG NAGAO

We present a modular invariant formulation of the open string in terms of the closed string. Chan–Paton factors are understood as multiplicities which arise from a factorization of the closed string. This interpretation of the Chan–Paton factors suggests that the SO (2D/2) open string is consistent to all orders of the loop expansion. We show that the open string may be viewed as a Z2-orbifold of the closed string. Relations are found between various string theories which seem to reinforce an earlier suggestion by Freund that all string theories are derivable from the D = 26 orientable closed bosonic string.


2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Yasuhiro Hayashi ◽  
Takahiro Ogino ◽  
Tadakatsu Sakai ◽  
Shigeki Sugimoto

Abstract We analyze excited baryon states using a holographic dual of quantum chromodynamics that is defined on the basis of an intersecting D4/D8-brane system. Studies of baryons in this model have been made by regarding them as a topological soliton of a gauge theory on a five-dimensional curved spacetime. However, this allows one to obtain only a certain class of baryons. We attempt to present a framework such that a whole set of excited baryons can be treated in a systematic way. This is achieved by employing the original idea of Witten, which states that a baryon is described by a system composed of $N_c$ open strings emanating from a baryon vertex. We argue that this system can be formulated by an Atiyah–Drinfeld–Hitchin–Manin-type matrix model of Hashimoto–Iizuka–Yi together with an infinite tower of the open string massive modes. Using this setup, we work out the spectra of excited baryons and compare them with the experimental data. In particular, we derive a formula for the nucleon Regge trajectory assuming that the excited nucleons lying on the trajectory are characterized by the excitation of a single open string attached on the baryon vertex.


2004 ◽  
Vol 19 (38) ◽  
pp. 2857-2870 ◽  
Author(s):  
B. SATHIAPALAN

We extend an earlier proposal for a gauge-invariant description of off-shell open strings (at tree level), using loop variables, to off-shell closed strings (at tree level). The basic idea is to describe the closed string amplitudes as a product of two open string amplitudes (using the technique of Kawai, Lewellen and Tye). The loop variable techniques that were used earlier for open strings can be applied here mutatis mutandis. It is a proposal for a theory whose on-shell amplitudes coincide with those of the closed bosonic string in 26 dimensions. It is also gauge-invariant off-shell. As was the case with the open string, the interacting closed string looks like a free closed string thickened to a band.


2003 ◽  
Vol 18 (40) ◽  
pp. 2873-2886 ◽  
Author(s):  
VLADIMIR DZHUNUSHALIEV ◽  
DOUGLAS SINGLETON

The well-known topological monopoles originally investigated by 't Hooft and Polyakov are known to arise in classical Yang–Mills–Higgs theory. With a pure gauge theory, it is known that the classical Yang–Mills field equation do not have such finite energy configurations. Here we argue that such configurations may arise in a semi-quantized Yang–Mills theory, where the original gauge group, SU(3), is reduced to a smaller gauge group, SU(2), and with some combination of the coset fields of the SU(3) to SU(2) reduction acting as effective scalar fields. The procedure is called semi-quantized since some of the original gauge fields are treated as quantum degrees of freedom, while others are postulated to be effectively described as classical degrees of freedom. Some speculation is offer on a possible connection between these monopole configurations and the confinement problem, and the nucleon spin puzzle.


Sign in / Sign up

Export Citation Format

Share Document