scholarly journals SUPERSYMMETRIC YANG-MILLS QUANTUM MECHANICS IN VARIOUS DIMENSIONS

2005 ◽  
Vol 20 (19) ◽  
pp. 4484-4491 ◽  
Author(s):  
JACEK WOSIEK

Recent analytical and numerical solutions of above systems are reviewed. Discussed results include: a) exact construction of the supersymmetric vacua in two space-time dimensions, and b) precise numerical calculations of the coexisting, continuous and discrete, spectra in the four-dimensional system, together with the identification of dynamical supermultiplets and SUSY vacua. New construction of the gluinoless SO (9) singlet state, which is vastly different from the empty state, in the ten-dimensional model is also briefly summarized.

Author(s):  
Abdulaziz D. Alhaidari

Using an algebraic method for solving the wave equation in quantum mechanics, we encountered a new class of orthogonal polynomials on the real line. One of these is a four-parameter polynomial with a discrete spectrum. Another that appeared while solving a Heun-type equation has a mix of continuous and discrete spectra. Based on these results and on our recent study of the solution space of an ordinary differential equation of the second kind with four singular points, we introduce a modification of the hypergeometric polynomials in the Askey scheme. Up to now, all of these polynomials are defined only by their three-term recursion relations and initial values. However, their other properties like the weight function, generating function, orthogonality, Rodrigues-type formula, etc. are yet to be derived analytically. This is an open problem in orthogonal polynomials.


Author(s):  
V. F. Edneral ◽  
O. D. Timofeevskaya

Introduction:The method of resonant normal form is based on reducing a system of nonlinear ordinary differential equations to a simpler form, easier to explore. Moreover, for a number of autonomous nonlinear problems, it is possible to obtain explicit formulas which approximate numerical calculations of families of their periodic solutions. Replacing numerical calculations with their precalculated formulas leads to significant savings in computational time. Similar calculations were made earlier, but their accuracy was insufficient, and their complexity was very high.Purpose:Application of the resonant normal form method and a software package developed for these purposes to fourth-order systems in order to increase the calculation speed.Results:It has been shown that with the help of a single algorithm it is possible to study equations of high orders (4th and higher). Comparing the tabulation of the obtained formulas with the numerical solutions of the corresponding equations shows good quantitative agreement. Moreover, the speed of calculation by prepared approximating formulas is orders of magnitude greater than the numerical calculation speed. The obtained approximations can also be successfully applied to unstable solutions. For example, in the Henon — Heyles system, periodic solutions are surrounded by chaotic solutions and, when numerically integrated, the algorithms are often unstable on them.Practical relevance:The developed approach can be used in the simulation of physical and biological systems.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Yolanda Lozano ◽  
Carlos Nunez ◽  
Anayeli Ramirez

Abstract We present a new infinite family of Type IIB supergravity solutions preserving eight supercharges. The structure of the space is AdS2 × S2 × CY2 × S1 fibered over an interval. These solutions can be related through double analytical continuations with those recently constructed in [1]. Both types of solutions are however dual to very different superconformal quantum mechanics. We show that our solutions fit locally in the class of AdS2 × S2 × CY2 solutions fibered over a 2d Riemann surface Σ constructed by Chiodaroli, Gutperle and Krym, in the absence of D3 and D7 brane sources. We compare our solutions to the global solutions constructed by Chiodaroli, D’Hoker and Gutperle for Σ an annulus. We also construct a cohomogeneity-two family of solutions using non-Abelian T-duality. Finally, we relate the holographic central charge of our one dimensional system to a combination of electric and magnetic fluxes. We propose an extremisation principle for the central charge from a functional constructed out of the RR fluxes.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Max Hübner

Abstract M-theory on local G2-manifolds engineers 4d minimally supersymmetric gauge theories. We consider ALE-fibered G2-manifolds and study the 4d physics from the view point of a partially twisted 7d supersymmetric Yang-Mills theory and its Higgs bundle. Euclidean M2-brane instantons descend to non-perturbative effects of the 7d supersymmetric Yang-Mills theory, which are found to be in one to one correspondence with the instantons of a colored supersymmetric quantum mechanics. We compute the contributions of M2-brane instantons to the 4d superpotential in the effective 7d description via localization in the colored quantum mechanics. Further we consider non-split Higgs bundles and analyze their 4d spectrum.


2016 ◽  
Author(s):  
Urs Wenger ◽  
Georg Bergner ◽  
Hang Liu
Keyword(s):  

2021 ◽  
Vol 2090 (1) ◽  
pp. 012076
Author(s):  
A Shobukhov ◽  
H Koibuchi

Abstract We propose a one-dimensional model for the dilute aqueous solution of NaCl which is treated as an incompressible fluid placed in the external electric field. This model is based on the Poisson-Nernst-Planck system of equations, which also contains the constant flow velocity as a parameter and considers the dissociation and the recombination of ions. We study the steady-state solution analytically and prove that it is a stable equilibrium. Analyzing the numerical solutions, we demonstrate the importance of dissociation and recombination for the physical meaningfulness of the model.


1999 ◽  
Vol 14 (37) ◽  
pp. 2595-2604 ◽  
Author(s):  
SAYURI MIYAGI

We investigate Yang–Mills instantons on a seven-dimensional manifold of G2 holonomy. By proposing a spherically symmetric ansatz for the Yang–Mills connection, we have ordinary differential equations as the reduced instanton equation, and give some explicit and numerical solutions.


1996 ◽  
Vol 11 (03) ◽  
pp. 207-209 ◽  
Author(s):  
ELSO DRIGO FILHO

We determine the solutions of the Schrödinger equation for an asymptotically linear potential. Analytical solutions are obtained by superalgebra in quantum mechanics and we establish when these solutions are possible. Numerical solutions for the spectra are obtained by the shifted 1/N expansion method.


Author(s):  
Mo Yang ◽  
Jin Wang ◽  
Kun Zhang ◽  
Ling Li ◽  
Yuwen Zhang

Detailed numerical analysis is presented for three-dimensional natural convection heat transfer in annulus with an internal concentric slotted cylinder. The internal slotted cylinder and the outer annulus are maintained at uniform but different temperatures. Governing equations are discretized using control volume technique based on staggered grid formulation and solved using SIMPLE algorithm with QUICK scheme. Flow and heat transfer characteristics are investigated for a Rayleigh number range of 10 to 106 while Prandtl number (Pr) is taken to be 0.7. The results indicate, at Rayleigh numbers below 105, the system shows two dimensional flow and heat transfer characteristics. On the other hand, the flow and heat transfer shows three dimensional characteristics while for Rayleigh numbers greater than 5×105. Comparison with experimental results indicated that the numerical solutions by three dimensional model can obtain more accuracy than the numerical solutions by two dimensional model. Besides, Numerical results show that the average equivalent conductivity coefficient of natural convection heat transfer of this problem can be enhanced by as much as 30% while relative slot width is more than 0.1.


Sign in / Sign up

Export Citation Format

Share Document