scholarly journals CHARGED LEPTON-NUCLEUS INELASTIC SCATTERING AT HIGH ENERGIES

2005 ◽  
Vol 20 (29) ◽  
pp. 6956-6958 ◽  
Author(s):  
K. S. KUZMIN ◽  
K. S. LOKHTIN ◽  
S. I. SINEGOVSKY

The composite model is made to describe inelastic high-energy scattering of muons and taus in standard rock. It involves photonuclear interactions at low Q2 as well as moderate Q2 processes and the deep inelastic scattering (DIS). In the DIS region the neutral current contribution is taken into consideration. Approximation formulas both for the muons and tau energy loss in standard rock are presented for wide energy range.

2002 ◽  
Vol 19 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Elena Pian

AbstractCritical progress in our understanding of high energy emission from AGN has been determined in the last 10 years by X-ray monitoring campaigns with many space missions, notably ROSAT, ASCA, RXTE, BeppoSAX, and XMM, often in conjunction with observations at other frequencies. The emphasis of the present review is on recent findings about X-ray variability of blazars. Among AGN, these exhibit the largest amplitude variations of the X-ray emission, often well correlated with variations at higher energies (GeV and TeV radiation). The accurate sampling of the X-ray spectra over more than three decades in energy, made possible by the wide energy range of BeppoSAX, has also shown strong spectral variability in blazar active states, suggesting extreme electron energies and leading to the identification of a class of ‘extreme synchrotron’ sources.


2018 ◽  
Vol 171 ◽  
pp. 18003 ◽  
Author(s):  
Grigory Feofilov ◽  
Vladimir Kovalenko ◽  
Andrei Puchkov

The multiplicity dependence of heavy flavour production in pp-collisions at LHC energies is studied in the framework of the multi-pomeron exchange model. The model is introducing the string-string interaction collectivity effects in pp collisions, which modifies multiplicity and transverse momenta, leading to the non-trivial mean pt vs. multiplicity (〈pt〉Nch − Nch). correlation. The string collectivity strength parameter is fixed by experimental data on multiplicity and transverse momentum correlation in a wide energy range (from ISR to LHC). The particles discrimination is implemented according to Schwinger mechanism taking into account the strong decays of hadron resonances. We demonstrate, that the faster-than-linear growth of the open charm production with the event charged particle multiplicity, observed in experimental pp high energy collisions, can be explained by the modification of the string tension due to the increasing overlap and interaction of quark-gluon strings. The model is extended for p-A interactions and the calculations for p-Pb collisions are performed.


Author(s):  
M. V. Korzhik

The most probable scenario for the development of experimental high-energy physics in the next 50 years is the creation of a family of Future Circular Colliders (FCC) at CERN, a Circular Electron–Positron Collider at China, and a Future Electron-Ion Collider at Brookhaven (USA), which continue the Large Hadron Collider (LHC) scientific program within the framework of the Standard Model and beyond it. The first generation of colliders to be put into operation will utilize the electron beam as one of the colliding species to provide precise mass spectroscopy in a wide energy range. Similarly to the measurements at the high luminosity phase of the LHC operation, the most important property of the detectors to be used in the experimental setup is a combination of the short response of the detectors and their high time resolution. The radiation tolerance to a harsh irradiation environment remains mandatory but not the main factor of the collider’s experiments using electronic beams. A short response in combination with high time resolution ensures minimization of the influence of the pile-up and spill-over effects at the high frequency of collisions (higher than 50 MGz). The radiation hardness of the materials maintains the long-term high accuracy of the detector calibration. This paper discusses the prospects for using modern inorganic scintillation materials for calorimetric detectors at future colliders.


1980 ◽  
Vol 124 (2) ◽  
pp. 313-326 ◽  
Author(s):  
S.A Gurvitz ◽  
L.P Kok ◽  
A.S Rinat

2019 ◽  
Vol 10 (01) ◽  
pp. 215-226
Author(s):  
Tohru Takahashi

Gamma–gamma colliders based on backward Compton scattering have been discussed mainly as an option for high energy electron–positron linear colliders, aiming to play a complementary role in energy frontier physics. The flexibility of gamma-ray beam by the Compton scheme, however, allows us to apply them to physics in a wide energy range, from MeV to TeV. In this paper, we review the future prospects of gamma–gamma colliders including recent discussions about Higgs boson factories and mid- and low-energy colliders as well as the option for electron–positron linear colliders.


2019 ◽  
Vol 187 (1) ◽  
pp. 77-82
Author(s):  
Alexey Sokolov ◽  
Ekaterina Kozlova ◽  
Torsten Radon

Abstract At particle accelerators, the knowledge of neutron spectra is important for radiation protection to improve the accuracy of dose measurements, for activation and radiation damage studies. Classical Bonner sphere spectrometer is a common reliable tool for this kind of measurements. Here we present a new set of cylinders with TLD cards as a sensitive element to be used for neutron spectroscopy in a wide energy range for continuous and ultra-short pulse radiation. A simple layout, relatively small dimensions and weight, as well as implementation of common materials providing low construction costs make the set useful for spectroscopic purposes. The unfolding results for various simulated radiation scenarios are also presented.


2000 ◽  
Vol 15 (01) ◽  
pp. 9-13 ◽  
Author(s):  
C. BOURRELY ◽  
J. SOFFER ◽  
TAI TSUN WU

We show that the rising total cross-sections σ(γγ→ hadrons) recently observed by the L3 and OPAL collaborations at LEP are fully consistent with the impact-picture for high-energy scattering. The impact picture is then used to predict this γγ total cross-section at higher energies, and confirm the universal increase of total cross-sections including those of pp, [Formula: see text] and γp.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
E. Iancu ◽  
A. H. Mueller ◽  
D. N. Triantafyllopoulos ◽  
S. Y. Wei

Abstract Using the dipole picture for electron-nucleus deep inelastic scattering at small Bjorken x, we study the effects of gluon saturation in the nuclear target on the cross-section for SIDIS (single inclusive hadron, or jet, production). We argue that the sensitivity of this process to gluon saturation can be enhanced by tagging on a hadron (or jet) which carries a large fraction z ≃ 1 of the longitudinal momentum of the virtual photon. This opens the possibility to study gluon saturation in relatively hard processes, where the virtuality Q2 is (much) larger than the target saturation momentum $$ {Q}_s^2 $$ Q s 2 , but such that z(1 − z)Q2 ≲ $$ {Q}_s^2 $$ Q s 2 . Working in the limit z(1 − z)Q2 ≪ $$ {Q}_s^2 $$ Q s 2 , we predict new phenomena which would signal saturation in the SIDIS cross-section. For sufficiently low transverse momenta k⊥ ≪ Qs of the produced particle, the dominant contribution comes from elastic scattering in the black disk limit, which exposes the unintegrated quark distribution in the virtual photon. For larger momenta k⊥ ≳ Qs, inelastic collisions take the leading role. They explore gluon saturation via multiple scattering, leading to a Gaussian distribution in k⊥ centred around Qs. When z(1 − z)Q2 ≪ Q2, this results in a Cronin peak in the nuclear modification factor (the RpA ratio) at moderate values of x. With decreasing x, this peak is washed out by the high-energy evolution and replaced by nuclear suppression (RpA< 1) up to large momenta k⊥ ≫ Qs. Still for z(1 − z)Q2 ≪ $$ {Q}_s^2 $$ Q s 2 , we also compute SIDIS cross-sections integrated over k⊥. We find that both elastic and inelastic scattering are controlled by the black disk limit, so they yield similar contributions, of zeroth order in the QCD coupling.


Sign in / Sign up

Export Citation Format

Share Document