scholarly journals LIGHT PSEUDO-GOLDSTONE BOSONS WITHOUT EXPLICIT SYMMETRY BREAKING

2007 ◽  
Vol 22 (06) ◽  
pp. 1161-1179
Author(s):  
ANTONIO O. BOUZAS

A mechanism is discussed to obtain light scalar fields from a spontaneously broken continuous symmetry without explicitly breaking it. If there is a continuous manifold of classical vacua in orbit space, its tangent directions describe classically massless fields that may acquire mass from perturbations of the potential that do not break the symmetry. We consider the simplest possible example, involving a scalar field in the adjoint representation of SU (N). We study the scalar mass spectrum and its renormalization group running at one-loop level including scalar and pseudoscalar Yukawa couplings to a massive Dirac fermion.

2013 ◽  
Vol 28 (14) ◽  
pp. 1350054 ◽  
Author(s):  
ALFONSO R. ZERWEKH

In this paper, we explore the possibility of constructing the quantum chromodynamics of a massive color-octet vector field without introducing higher structures like extended gauge symmetries, extra dimensions or scalar fields. We show that gauge invariance is not enough to constraint the couplings. Nevertheless, the requirement of unitarity fixes the values of the coupling constants, which otherwise would be arbitrary. Additionally, it opens a new discrete symmetry which makes the coloron stable and avoid its resonant production at a collider. On the other hand, a judicious definition of the gauge fixing terms modifies the propagator of the massive field making it well-behaved in the ultraviolet limit. The relation between our model and the more general approach based on extended gauge symmetries is also discussed.


2018 ◽  
Vol 33 (27) ◽  
pp. 1850157 ◽  
Author(s):  
Theodore N. Jacobson ◽  
Tonnis ter Veldhuis

We derive the one-loop effective action for scalar, pseudoscalar, and electromagnetic fields coupled to a Dirac fermion in an extension of QED with Yukawa couplings. Using the Schwinger proper-time formalism and zeta-function regularization, we calculate the full nonperturbative effective action to one loop in the constant background field approximation. Our result is nonperturbative in the external fields, and goes beyond existing results in the literature which treat only the first nontrivial order involving the pseudoscalar. The result has an even and odd part, which are related to the modulus and phase of the fermion functional determinant. The even contribution to the effective action involves the modulus of the effective Yukawa couplings and is invariant under global chiral transformations while the odd contribution is proportional to the angle between the scalar and pseudoscalar couplings. In different limits the effective action reduces either to the Euler–Heisenberg effective action or the Coleman–Weinberg potential. We also comment on the relationship between the odd part of the effective action and the chiral anomaly in QED.


2000 ◽  
Vol 15 (10) ◽  
pp. 709-721
Author(s):  
TAKAYUKI MATSUKI ◽  
MASASHI SHIOTANI

Assuming dynamical spontaneous breakdown of chiral symmetry for massless gauge theory without scalar fields, we find a method to construct an effective action of the dynamical Nambu–Goldstone bosons and elementary fermions by using auxiliary fields. Here dynamical particles are assumed to be composed of elementary fermions. Various quantities including decay constants are calculated from this effective action.


2009 ◽  
Vol 5 (H15) ◽  
pp. 316-316
Author(s):  
S. A. Levshakov ◽  
I. I. Agafonova ◽  
P. Molaro ◽  
D. Reimers

AbstractSpatial and temporal variations in the electron-to-proton mass ratio, μ, and in the fine-structure constant, α, are not present in the Standard Model of particle physics but they arise quite naturally in grant unification theories, multidimensional theories and in general when a coupling of light scalar fields to baryonic matter is considered. The light scalar fields are usually attributed to a negative pressure substance permeating the entire visible Universe and known as dark energy. This substance is thought to be responsible for a cosmic acceleration at low redshifts, z < 1. A strong dependence of μ and α on the ambient matter density is predicted by chameleon-like scalar field models. Calculations of atomic and molecular spectra show that different transitions have different sensitivities to changes in fundamental constants. Thus, measuring the relative line positions, Δ V, between such transitions one can probe the hypothetical variability of physical constants. In particular, interstellar molecular clouds can be used to test the matter density dependence of μ, since gas density in these clouds is ~15 orders of magnitude lower than that in terrestrial environment. We use the best quality radio spectra of the inversion transition of NH3 (J,K)=(1,1) and rotational transitions of other molecules to estimate the radial velocity offsets, Δ V ≡ Vrot - Vinv. The obtained value of Δ V shows a statistically significant positive shift of 23±4stat±3sys m s−1 (1σ). Being interpreted in terms of the electron-to-proton mass ratio variation, this gives Δμ/μ = (22±4stat±3sys)×10−9. A strong constraint on variation of the quantity F = α2/μ in the Milky Way is found from comparison of the fine-structure transition J=1-0 in atomic carbon C i with the low-J rotational lines in carbon monoxide 13CO arising in the interstellar molecular clouds: |Δ F/F| < 3×10−7. This yields |Δ α/α| < 1.5×10−7 at z = 0. Since extragalactic absorbers have gas densities similar to those in the ISM, the values of |Δ α/α| and |Δ μ/μ| at high-z are expected to be at the same level as estimated in the Milky Way providing no temporal dependence of α and μ is present. We re-analyzed and reviewed the available optical spectra of quasars to probe Δα/α from intervening absorbers. The Fe i system at z = 0.45 towards HE 0000–2340 provides one of the best opportunities for precise measurements of Δα/α at low redshift. The current estimate is Δα/α = (7±7)×10−6. With the updated sensitivity coefficients for the Fe ii lines we re-analyzed the z = 1.84 system from the high-resolution UVES/VLT spectrum of Q 1101–264 (FWHM = 3.8 km s−1) and found Δα/α = (4.0±2.8)×10−6. The most accurate upper limit on cosmological variability of α is obtained from the Fe ii system at z = 1.15 towards the bright quasar HE 0515–4414 (V=14.9): Δα/α = (-0.12±1.79)×10−6, or |Δα/α| < 2×10−6. The limit of 2×10−6 corresponds to the utmost accuracy which can be reached with available to date optical facilities.


2012 ◽  
Vol 01 (02) ◽  
pp. 50-51
Author(s):  
Peter Higgs

The story begins in 1960, when Nambu, inspired by the BCS theory of superconductivity, formulated chirally invariant relativistic models of interacting massless fermions in which spontaneous symmetry breaking generates fermionic masses (the analogue of the BCS gap). Around the same time Jeffrey Goldstone discussed spontaneous symmetry breaking in models containing elementary scalar fields (as in Ginzburg-Landau theory). I became interested in the problem of how to avoid a feature of both kinds of model, which seemed to preclude their relevance to the real world, namely the existence in the spectrum of massless spin-zero bosons (Goldstone bosons). By 1962 this feature of relativistic field theories had become the subject of the Goldstone theorem.


1993 ◽  
Vol 02 (03) ◽  
pp. 295-321 ◽  
Author(s):  
G.J. BENSON ◽  
R.G. MOORHOUSE ◽  
A.B. HENRIQUES

We calculate and discuss the possible consequences of the existence of light scalar particles on the properties of neutron stars. We take the mass and coupling to matter of this hypothetical scalar to be free parameters in our model and present results for a wide range of these. In highlighting the contrasting cases of scalar presence and absence, we have used two equations of state for the matter — the first being the relatively simple equation of state for an ideal gas of fermions; the second, which is more sophisticated, being based upon considerations of nucleon-nucleon interactions. Our results show that, for certain values of scalar mass and coupling, significant changes in the structure of the star can arise. We then examine how the presence of this scalar field can affect the cooling of mature neutron stars via alterations to the modified URCA process. Finally, we combine the results of our calculations with observational data on neutron stars, and compare our resulting bounds on the scalar particle coupling to those obtainable by other means.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Qianshu Lu ◽  
Matthew Reece ◽  
Zhong-Zhi Xianyu

Abstract Light scalar fields typically develop spatially varying backgrounds during inflation. Very often they do not directly affect the density perturbations, but interact with other fields that do leave nontrivial signals in primordial perturbations. In this sense they become “missing scalars” at the cosmological collider. We study potentially observable signals of these missing scalars, focusing on a special example where a missing scalar distorts the usual oscillatory features in the squeezed bispectrum. The distortion is also a useful signal distinguishing the de Sitter background induced thermal mass from a constant intrinsic mass.


2019 ◽  
Vol 100 (7) ◽  
Author(s):  
Clare Burrage ◽  
Christian Käding ◽  
Peter Millington ◽  
Jiří Minář

We derive the unique, local vacuum stress tensor for electromagnetic, neutrino and massless scalar fields propagating in a Robertson─Walker background spacetime. The result is used to compute the numerical coefficients of the conformal trace anomalies from the known values of the Casimir energy in the Einstein universe.


2016 ◽  
Vol 31 (32) ◽  
pp. 1650164 ◽  
Author(s):  
S. S. Afonin

The calculation of the mass of light scalar isosinglet meson within the Shifman–Vainshtein–Zakharov (SVZ) sum rules is revisited. We develop simple analytical methods for estimation of hadron masses in the SVZ approach and try to reveal the origin of their numerical values. The calculations of hadron parameters in the SVZ sum rules are known to be heavily based on a choice of the perturbative threshold. This choice requires some important ad hoc information. We show analytically that the scalar mass under consideration has a lower and upper bound which are independent of this choice: [Formula: see text] GeV.


Sign in / Sign up

Export Citation Format

Share Document