scholarly journals DARK ENERGY IN PRACTICE

2010 ◽  
Vol 25 (29) ◽  
pp. 5253-5331 ◽  
Author(s):  
DOMENICO SAPONE

In this paper we review a part of the approaches that have been considered to explain the extraordinary discovery of the late time acceleration of the Universe. We discuss the arguments that have led physicists and astronomers to accept dark energy as the current preferable candidate to explain the acceleration. We highlight the problems and the attempts to overcome the difficulties related to such a component. We also consider alternative theories capable of explaining the acceleration of the Universe, such as modification of gravity. We compare the two approaches and point out the observational consequences, reaching the sad but foresightful conclusion that we will not be able to distinguish between a Universe filled by dark energy or a Universe where gravity is different from General Relativity. We review the present observations and discuss the future experiments that will help us to learn more about our Universe. This is not intended to be a complete list of all the dark energy models but this paper should be seen as a review on the phenomena responsible for the acceleration. Moreover, in a landscape of hardly compelling theories, it is an important task to build simple measurable parameters useful for future experiments that will help us to understand more about the evolution of the Universe.

2007 ◽  
Vol 16 (12a) ◽  
pp. 2065-2074 ◽  
Author(s):  
MARK TRODDEN

I briefly discuss some attempts to construct a consistent modification to general relativity (GR) that might explain the observed late-time acceleration of the Universe and provide an alternative to dark energy. I describe the issues facing extensions to GR, illustrate these with a specific example, and discuss the resulting observational and theoretical obstacles.


Universe ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. 75
Author(s):  
Andrea Addazi ◽  
Stephon Alexander ◽  
Antonino Marcianò

We account for the late time acceleration of the Universe by extending the Quantum Chromodynamics (QCD) color to a S U ( 3 ) invisible sector (IQCD). If the Invisible Chiral symmetry is broken in the early universe, a condensate of dark pions (dpions) and dark gluons (dgluons) forms. The condensate naturally forms due to strong dynamics similar to the Nambu–Jona-Lasinio mechanism. As the Universe evolves from early times to present times the interaction energy between the dgluon and dpion condensate dominates with a negative pressure equation of state and causes late time acceleration. We conclude with a stability analysis of the coupled perturbations of the dark pions and dark gluons.


2018 ◽  
Vol 33 (36) ◽  
pp. 1850215 ◽  
Author(s):  
A. I. Keskin

In this study, we show the early inflation and the late-time acceleration of the universe in the model [Formula: see text], which shows a minimum connection between geometry and scalar field. Both a quintessential inflation and the super inflation mechanism are discussed in the model, and for both the cases the some conditions for n are obtained under the constraint of the observational data. However, the oscillations of the scalar field are analyzed in view of observational constraints. By means of the oscillations of the scalar field, besides the inflation of the universe a condition of n for the late-time quintessence type of dark energy is obtained.


Pramana ◽  
2010 ◽  
Vol 74 (3) ◽  
pp. 481-489 ◽  
Author(s):  
Narayan Banerjee ◽  
Sudipta Das ◽  
Koyel Ganguly

2019 ◽  
Vol 34 (11) ◽  
pp. 1950086 ◽  
Author(s):  
M. Abdollahi Zadeh ◽  
A. Sheykhi ◽  
H. Moradpour

Using the non-extensive Tsallis entropy and the holographic hypothesis, we propose a new dark energy (DE) model with timescale as infrared (IR) cutoff. Considering the age of the Universe as well as the conformal time as IR cutoffs, we investigate the cosmological consequences of the proposed DE models and study the evolution of the Universe filled by a pressureless matter and the obtained DE candidates. We find that although this model can describe the late time acceleration and the density, deceleration and the equation of state parameters show satisfactory behavior by themselves, these models are classically unstable unless the interaction between the two dark sectors of the Universe is taken into account. In addition, the results of the existence of a mutual interaction between the cosmos sectors are also addressed. We find out that the interacting models are stable at the classical level which is in contrast to the original interacting agegraphic dark energy models which are classically unstable [K. Y. Kim, H. W. Lee and Y. S. Myung, Phys. Lett. B 660, 118 (2008)].


2014 ◽  
Vol 11 (02) ◽  
pp. 1460006 ◽  
Author(s):  
Shin'ichi Nojiri ◽  
Sergei D. Odintsov

We consider modified gravity which may describe the early-time inflation and/or late-time cosmic acceleration of the universe. In particular, we discuss the properties of F(R), F(G), string-inspired and scalar-Einstein–Gauss–Bonnet gravities, including their FRW equations and fluid or scalar-tensor description. Simplest accelerating cosmologies are investigated and possibility of unified description of the inflation with dark energy is described. The cosmological reconstruction program which permits to get the requested universe evolution from modified gravity is developed. As some extension, massive F(R) bigravity which is ghost-free theory is presented. Its scalar-tensor form turns out to be the easiest formulation. The cosmological reconstruction method for such bigravity is presented. The unified description of inflation with dark energy in F(R) bigravity turns out to be possible.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

In this paper, we study early-time inflation and late-time acceleration of the universe by nonminimally coupling the Dirac field with torsion in the spatially flat Friedman-Robertson-Walker (FRW) cosmological model background. The results obtained by the Noether symmetry approach with and without a gauge term are compared. Additionally, we compare these results with that of the3+1dimensional teleparallel gravity under Noether symmetry approach. And we see that the study explains early-time inflation and late-time acceleration of the universe.


2020 ◽  
Vol 17 (05) ◽  
pp. 2050066
Author(s):  
Gargee Chakraborty ◽  
Surajit Chattopadhyay

Motivated by the work of Nojiri et al. [S. Nojiri, S. D. Odintsov and E. N. Saridakis, Holographic inflation, Phys. Lett. B 797 (2019) 134829], this study reports a model of inflation under the consideration that the inflationary regime is originated by a type of holographic energy density. The infrared cutoff has been selected based on the modified holographic model that is a particular case of Nojiri–Odintsov holographic dark energy [S. Nojiri and S. D. Odintsov, Unifying phantom inflation with late-time acceleration: Scalar phantom–non-phantom transition model and generalized holographic dark energy, Gen. Relativ. Gravit. 38 (2006) 1285] that unifies phantom inflation with the acceleration of the universe on late time. On getting an analytical solution for Hubble parameter we considered the presence of bulk viscosity and the effective equation of state parameter appeared to be consistent with inflationary scenario with some constraints. It has also being observed that in the inflationary scenario the contribution of bulk viscosity is not of much significance and its influence is increasing with the evolution of the universe. Inflationary observables have been computed for the model and the slow-roll parameters have been computed. Finally, it has been observed that the trajectories in [Formula: see text] are compatible with the observational bound found by Planck. It has been concluded that the tensor to scalar ratio for this model can explain the primordial fluctuation in the early universe as well.


Sign in / Sign up

Export Citation Format

Share Document