scholarly journals Accelerating cosmology in modified gravity: From convenient F(R) or string-inspired theory to bimetric F(R) gravity

2014 ◽  
Vol 11 (02) ◽  
pp. 1460006 ◽  
Author(s):  
Shin'ichi Nojiri ◽  
Sergei D. Odintsov

We consider modified gravity which may describe the early-time inflation and/or late-time cosmic acceleration of the universe. In particular, we discuss the properties of F(R), F(G), string-inspired and scalar-Einstein–Gauss–Bonnet gravities, including their FRW equations and fluid or scalar-tensor description. Simplest accelerating cosmologies are investigated and possibility of unified description of the inflation with dark energy is described. The cosmological reconstruction program which permits to get the requested universe evolution from modified gravity is developed. As some extension, massive F(R) bigravity which is ghost-free theory is presented. Its scalar-tensor form turns out to be the easiest formulation. The cosmological reconstruction method for such bigravity is presented. The unified description of inflation with dark energy in F(R) bigravity turns out to be possible.

2007 ◽  
Vol 16 (12a) ◽  
pp. 2065-2074 ◽  
Author(s):  
MARK TRODDEN

I briefly discuss some attempts to construct a consistent modification to general relativity (GR) that might explain the observed late-time acceleration of the Universe and provide an alternative to dark energy. I describe the issues facing extensions to GR, illustrate these with a specific example, and discuss the resulting observational and theoretical obstacles.


2012 ◽  
Vol 21 (02) ◽  
pp. 1250012
Author(s):  
PRIYADARSHI MAJUMDAR

We formulate a modified gravity theory that eliminates the need for dark energy and is stable for a Lagrangian containing R, R2 as well as 1/R terms (i.e. nonlinear contributions of the Ricci curvature with a non-analytic model of f(R) at R = 0) without considering any matter-dominated era. The terms with positive powers (1, 2) of the curvature support the inflationary epoch while the terms with negative power (-1) serves as effective dark energy, supporting current cosmic acceleration. We present a few analytical solutions of evolution equation for the deceleration parameter q as a function of Hubble parameter H and time t; specially in one solution, the universe evolves continuously from q = 1 (a radiation-dominated epoch) to q = -1/2 (dark-energy-dominated late-time accelerating phase) when the universe is sufficiently old. The solution is supported by numerical results. The transition from the decelerated (q > 0) to the accelerated phase (q < 0) of expansion takes place smoothly without having to resort to a study of asymptotic behavior.


2004 ◽  
Vol 19 (08) ◽  
pp. 627-638 ◽  
Author(s):  
SHIN'ICHI NOJIRI ◽  
SERGEI D. ODINTSOV

We discuss the modified gravity which may produce the current cosmic acceleration of the universe and eliminate the need for dark energy. It is shown that such models where the action quickly grows with the decrease of the curvature define the FRW universe with the minimal curvature. Infinite time is required to reach the minimal curvature during the universe evolution. It is demonstrated that quantum effects of conformal fields may strongly suppress the instabilities discovered in modified gravity. We also briefly speculate on the modification of gravity combined with the presence of the cosmological constant dark energy.


2018 ◽  
Vol 33 (34) ◽  
pp. 1850199 ◽  
Author(s):  
A. I. Keskin

In this study, we examine two models of the scalar field, that is, a normal scalar field and a tachyon scalar field in [Formula: see text] gravity to describe cosmic acceleration of the universe, where [Formula: see text], [Formula: see text] and [Formula: see text] are Ricci curvature scalar, trace of energy–momentum tensor and kinetic energy of scalar field [Formula: see text], respectively. Using the minimal-coupling Lagrangian [Formula: see text], for both the scalar models we obtain a viable cosmological system, where [Formula: see text] and [Formula: see text] are real constants. While a normal scalar field gives a system describing expansion from the deceleration to the late-time acceleration, tachyon field together with [Formula: see text] in the system produces a quintessential expansion which is very close to de Sitter point, where we find a new condition [Formula: see text] for inflation.


2013 ◽  
Vol 22 (13) ◽  
pp. 1330026 ◽  
Author(s):  
BRETT BOCHNER

We review the causal backreaction paradigm, in which the need for Dark Energy is eliminated via the generation of an apparent cosmic acceleration from the causal flow of inhomogeneity information coming in from distant structure-forming regions. The formalism detailed here incorporates the effects of "recursive nonlinearities": the process by which already-established metric perturbations will subsequently act to slow-down all future flows of inhomogeneity information. Despite such effects, we find viable cosmological models in which causal backreaction successfully serves as a replacement for Dark Energy, via the adoption of relatively large values for the dimensionless "strength" of the clustering evolution functions being modeled. These large values are justified by the hierarchical nature of clustering and virialization in the universe, which occurs on multiple cosmic length scales simultaneously; moreover, the clustering model amplitudes needed to match the apparent acceleration can be moderated via the incorporation of a model parameter representing the late-time slow-down of clustering due to astrophysical feedback processes. In summary, an alternative cosmic concordance can be achieved for a matter-only universe in which the apparent acceleration observed is generated entirely by causal backreaction effects. Lastly, considering the long-term fate of the universe, while the possibility of an "eternal" acceleration due to causal backreaction seems unlikely, this conclusion does not take into account the large-scale breakdown of cosmological isotropy in the far future, or the eventual ubiquity of gravitationally-nonlinear perturbations.


2018 ◽  
Vol 15 (10) ◽  
pp. 1850168 ◽  
Author(s):  
Rashid Zia ◽  
Dinesh Chandra Maurya ◽  
Anirudh Pradhan

In this paper, spatially homogeneous and anisotropic Bianchi type-[Formula: see text] dark energy (DE) cosmological transit models with string fluid source in [Formula: see text] gravity [T. Harko et al., Phys. Rev. D 84 (2011) 024020], where [Formula: see text] is the Ricci scalar and [Formula: see text] the trace of the stress energy–momentum tensor, have been studied in the context of early time decelerating and late-time accelerating expansion of the Universe as suggested by the recent observations. The exact solutions of the field equations are obtained first by using generalized hybrid expansion law (HEL) [Formula: see text] which yields a time-dependent deceleration parameter [Formula: see text] and second by considering the metric coefficient [Formula: see text]. By using recent constraints from supernovae type-Ia union data [Cunha, arXiv:0811.2379[astro-ph]], we obtain [Formula: see text] and [Formula: see text] for transit model [Formula: see text]. The Universe has an initial singularity and is anisotropic closed and it tends to be flat at the late time, i.e. our Universe is in accelerating expansion. Our model shows a phase transition property from decelerating to accelerating. It is remarkable to mention here that our Universe is homogeneous and anisotropic in the early phase whereas it becomes homogeneous and isotropic for [Formula: see text]. We have also discussed the stability of the background solution with respect to perturbations of the metric along with the properties of future singularities in the Universe dominated by DE including the phantom-type fluid. Various physical and dynamical parameters are also calculated and investigated in terms of time and redshift both.


2010 ◽  
Vol 25 (29) ◽  
pp. 5253-5331 ◽  
Author(s):  
DOMENICO SAPONE

In this paper we review a part of the approaches that have been considered to explain the extraordinary discovery of the late time acceleration of the Universe. We discuss the arguments that have led physicists and astronomers to accept dark energy as the current preferable candidate to explain the acceleration. We highlight the problems and the attempts to overcome the difficulties related to such a component. We also consider alternative theories capable of explaining the acceleration of the Universe, such as modification of gravity. We compare the two approaches and point out the observational consequences, reaching the sad but foresightful conclusion that we will not be able to distinguish between a Universe filled by dark energy or a Universe where gravity is different from General Relativity. We review the present observations and discuss the future experiments that will help us to learn more about our Universe. This is not intended to be a complete list of all the dark energy models but this paper should be seen as a review on the phenomena responsible for the acceleration. Moreover, in a landscape of hardly compelling theories, it is an important task to build simple measurable parameters useful for future experiments that will help us to understand more about the evolution of the Universe.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ganim Gecim ◽  
Yusuf Sucu

In this paper, we study early-time inflation and late-time acceleration of the universe by nonminimally coupling the Dirac field with torsion in the spatially flat Friedman-Robertson-Walker (FRW) cosmological model background. The results obtained by the Noether symmetry approach with and without a gauge term are compared. Additionally, we compare these results with that of the3+1dimensional teleparallel gravity under Noether symmetry approach. And we see that the study explains early-time inflation and late-time acceleration of the universe.


2004 ◽  
Vol 19 (06) ◽  
pp. 449-456 ◽  
Author(s):  
BEILI WANG ◽  
HONGYA LIU ◽  
LIXIN XU

Recent observations of Type Ia supernovae provide evidence for the acceleration of our universe, which leads to the possibility that the universe is entering an inflationary epoch. We simulate it under a "big bounce" model, which contains a time variable cosmological "constant" that is derived from a higher dimension and manifests itself in 4D spacetime as dark energy. By properly choosing the two arbitrary functions contained in the model, we obtain a simple exact solution in which the evolution of the universe is divided into several stages. Before the big bounce, the universe contracts from a Λ-dominated vacuum, and after the bounce, the universe expands. In the early time after the bounce, the expansion of the universe is decelerating. In the late time after the bounce, dark energy (i.e. the variable cosmological "constant") overtakes dark matter and baryons, and the expansion enters an accelerating stage. When time tends to infinity, the contribution of dark energy tends to two thirds of the total energy density of the universe, qualitatively in agreement with observations.


2019 ◽  
Vol 35 (05) ◽  
pp. 2050007 ◽  
Author(s):  
Nasr Ahmed

We discuss the recently suggested Ricci–Gauss–Bonnet holographic dark energy in Chern–Simons modified gravity. We have tested some general forms of the scale factor [Formula: see text], and used two physically reasonable forms which have been proved to be consistent with observations. Both solutions predict a sign flipping in the evolution of cosmic pressure which is positive during the early-time deceleration and negative during the late-time acceleration. This sign flipping in the evolution of cosmic pressure helps in explaining the cosmic deceleration–acceleration transition, and it has appeared in other cosmological models in different contexts. However, this work shows a pressure singularity which needs to be explained. The evolution of the equation of state parameter [Formula: see text] shows the same asymptotic behavior for both solutions indicating a quintessence-dominated universe in the far future. We also note that [Formula: see text] goes to negative values (leaving the decelerating dust-dominated era at [Formula: see text]) at exactly the same time the pressure becomes negative. Again, there is another singularity in the behavior of [Formula: see text] which happens at the same cosmic time of the pressure singularity.


Sign in / Sign up

Export Citation Format

Share Document