scholarly journals ON INVARIANTS AND SCALAR CHIRAL CORRELATION FUNCTIONS IN ${\mathcal N} = 1$ SUPERCONFORMAL FIELD THEORIES

2011 ◽  
Vol 26 (12) ◽  
pp. 2007-2025
Author(s):  
HOLGER KNUTH

A general expression for the four-point function with vanishing total R-charge of antichiral and chiral superfields in [Formula: see text] superconformal theories is given. It is obtained by applying the exponential of a simple universal nilpotent differential operator to an arbitrary function of two cross-ratios. To achieve this the nilpotent superconformal invariants according to Park are focused. Several dependencies between these invariants are presented, so that eight nilpotent invariants and 27 monomials of these invariants of degree d > 1 are left being linearly independent. It is analyzed, how terms within the four-point function of general scalar superfields cancel in order to fulfill the chiral restrictions.

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Evgeny I. Buchbinder ◽  
Jessica Hutomo ◽  
Sergei M. Kuzenko

Abstract We consider $$ \mathcal{N} $$ N = 1 superconformal field theories in four dimensions possessing an additional conserved spinor current multiplet Sα and study three-point functions involving such an operator. A conserved spinor current multiplet naturally exists in superconformal theories with $$ \mathcal{N} $$ N = 2 supersymmetry and contains the current of the second supersymmetry. However, we do not assume $$ \mathcal{N} $$ N = 2 supersymmetry. We show that the three-point function of two spinor current multiplets and the $$ \mathcal{N} $$ N = 1 supercurrent depends on three independent tensor structures and, in general, is not contained in the three-point function of the $$ \mathcal{N} $$ N = 2 supercurrent. It then follows, based on symmetry considerations only, that the existence of one more Grassmann odd current multiplet in $$ \mathcal{N} $$ N = 1 superconformal field theory does not necessarily imply $$ \mathcal{N} $$ N = 2 superconformal symmetry.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Markus Dierigl ◽  
Paul-Konstantin Oehlmann ◽  
Fabian Ruehle

Abstract Six-dimensional $$ \mathcal{N} $$ N = (1, 0) superconformal field theories can be engineered geometrically via F-theory on elliptically-fibered Calabi-Yau 3-folds. We include torsional sections in the geometry, which lead to a finite Mordell-Weil group. This allows us to identify the full non-Abelian group structure rather than just the algebra. The presence of torsion also modifies the center of the symmetry groups and the matter representations that can appear. This in turn affects the tensor branch of these theories. We analyze this change for a large class of superconformal theories with torsion and explicitly construct their tensor branches. Finally, we elaborate on the connection to the dual heterotic and M-theory description, in which our configurations are interpreted as generalizations of discrete holonomy instantons.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Enrico M. Brehm ◽  
Matteo Broccoli

Abstract We discuss a computer implementation of a recursive formula to calculate correlation functions of descendant states in two-dimensional CFT. This allows us to obtain any N-point function of vacuum descendants, or to express the correlator as a differential operator acting on the respective primary correlator in case of non-vacuum descendants. With this tool at hand, we then study some entanglement and distinguishability measures between descendant states, namely the Rényi entropy, trace square distance and sandwiched Rényi divergence. Our results provide a test of the conjectured Rényi QNEC and new tools to analyse the holographic description of descendant states at large c.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
N. Lambert ◽  
A. Lipstein ◽  
R. Mouland ◽  
P. Richmond

Abstract We study correlation functions in five-dimensional non-Lorentzian theories with an SU(1, 3) conformal symmetry. Examples of such theories have recently been obtained as Ω-deformed Yang-Mills Lagrangians arising from a null reduction of six-dimensional superconformal field theories on a conformally compactified Minkowski space. The correlators exhibit a rich structure with many novel properties compared to conventional correlators in Lorentzian conformal field theories. Moreover, identifying the instanton number with the Fourier mode number of the dimensional reduction offers a hope to formulate six-dimensional conformal field theories in terms of five-dimensional Lagrangian theories. To this end we show that the Fourier decompositions of six-dimensional correlation functions solve the Ward identities of the SU(1, 3) symmetry, although more general solutions are possible. Conversely we illustrate how one can reconstruct six-dimensional correlation functions from those of a five-dimensional theory, and do so explicitly at 2- and 3-points. We also show that, in a suitable decompactification limit Ω → 0, the correlation functions become those of the DLCQ description.


1987 ◽  
Vol 195 (2) ◽  
pp. 202-208 ◽  
Author(s):  
Francesco Ravanini ◽  
Sung-Kil Yang

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Cyril Closset ◽  
Simone Giacomelli ◽  
Sakura Schäfer-Nameki ◽  
Yi-Nan Wang

Abstract Canonical threefold singularities in M-theory and Type IIB string theory give rise to superconformal field theories (SCFTs) in 5d and 4d, respectively. In this paper, we study canonical hypersurface singularities whose resolutions contain residual terminal singularities and/or 3-cycles. We focus on a certain class of ‘trinion’ singularities which exhibit these properties. In Type IIB, they give rise to 4d $$ \mathcal{N} $$ N = 2 SCFTs that we call $$ {D}_p^b $$ D p b (G)-trinions, which are marginal gaugings of three SCFTs with G flavor symmetry. In order to understand the 5d physics of these trinion singularities in M-theory, we reduce these 4d and 5d SCFTs to 3d $$ \mathcal{N} $$ N = 4 theories, thus determining the electric and magnetic quivers (or, more generally, quiverines). In M-theory, residual terminal singularities give rise to free sectors of massless hypermultiplets, which often are discretely gauged. These free sectors appear as ‘ugly’ components of the magnetic quiver of the 5d SCFT. The 3-cycles in the crepant resolution also give rise to free hypermultiplets, but their physics is more subtle, and their presence renders the magnetic quiver ‘bad’. We propose a way to redeem the badness of these quivers using a class $$ \mathcal{S} $$ S realization. We also discover new S-dualities between different $$ {D}_p^b $$ D p b (G)-trinions. For instance, a certain E8 gauging of the E8 Minahan-Nemeschansky theory is S-dual to an E8-shaped Lagrangian quiver SCFT.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
D. Rodriguez-Gomez ◽  
J.G. Russo

Abstract We compute thermal 2-point correlation functions in the black brane AdS5 background dual to 4d CFT’s at finite temperature for operators of large scaling dimension. We find a formula that matches the expected structure of the OPE. It exhibits an exponentiation property, whose origin we explain. We also compute the first correction to the two-point function due to graviton emission, which encodes the proper time from the event horizon to the black hole singularity.


2020 ◽  
Vol 2020 (2) ◽  
Author(s):  
Hirotaka Hayashi ◽  
Sung-Soo Kim ◽  
Kimyeong Lee ◽  
Futoshi Yagi

Sign in / Sign up

Export Citation Format

Share Document