scholarly journals Bounds on scalar masses in theories of moduli stabilization

2014 ◽  
Vol 29 (11n12) ◽  
pp. 1450073 ◽  
Author(s):  
Bobby Samir Acharya ◽  
Gordon Kane ◽  
Eric Kuflik

In recent years it has been realized that pre-BBN decays of moduli can be a significant source of dark matter production, giving a "nonthermal WIMP miracle" and substantially reduced fine-tuning in cosmological axion physics. We study moduli masses and sharpen the claim that moduli dominated the pre-BBN universe. We conjecture that in any string theory with stabilized moduli there will be at least one modulus field whose mass is of order (or less than) the gravitino mass. Cosmology then generically requires the gravitino mass not be less than about 30 TeV and the cosmological history of the universe is nonthermal prior to BBN. Stable LSP's produced in these decays can account for the observed dark matter if they are "wino-like." We briefly consider implications for the LHC, rare decays, and dark matter direct detection and point out that these results could prove challenging for models attempting to realize gauge mediation in string theory.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Partha Konar ◽  
Ananya Mukherjee ◽  
Abhijit Kumar Saha ◽  
Sudipta Show

Abstract We propose an appealing alternative scenario of leptogenesis assisted by dark sector which leads to the baryon asymmetry of the Universe satisfying all theoretical and experimental constraints. The dark sector carries a non minimal set up of singlet doublet fermionic dark matter extended with copies of a real singlet scalar field. A small Majorana mass term for the singlet dark fermion, in addition to the typical Dirac term, provides the more favourable dark matter of pseudo-Dirac type, capable of escaping the direct search. Such a construction also offers a formidable scope to radiative generation of active neutrino masses. In the presence of a (non)standard thermal history of the Universe, we perform the detailed dark matter phenomenology adopting the suitable benchmark scenarios, consistent with direct detection and neutrino oscillations data. Besides, we have demonstrated that the singlet scalars can go through CP-violating out of equilibrium decay, producing an ample amount of lepton asymmetry. Such an asymmetry then gets converted into the observed baryon asymmetry of the Universe through the non-perturbative sphaleron processes owing to the presence of the alternative cosmological background considered here. Unconventional thermal history of the Universe can thus aspire to lend a critical role both in the context of dark matter as well as in realizing baryogenesis.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lorenzo Calibbi ◽  
Francesco D’Eramo ◽  
Sam Junius ◽  
Laura Lopez-Honorez ◽  
Alberto Mariotti

Abstract Displaced vertices at colliders, arising from the production and decay of long-lived particles, probe dark matter candidates produced via freeze-in. If one assumes a standard cosmological history, these decays happen inside the detector only if the dark matter is very light because of the relic density constraint. Here, we argue how displaced events could very well point to freeze-in within a non-standard early universe history. Focusing on the cosmology of inflationary reheating, we explore the interplay between the reheating temperature and collider signatures for minimal freeze-in scenarios. Observing displaced events at the LHC would allow to set an upper bound on the reheating temperature and, in general, to gather indirect information on the early history of the universe.


2015 ◽  
Vol 04 (01) ◽  
pp. 28-30
Author(s):  
Yuan-Hann Chang

It is known that the majority (about 80%) of the matter in the universe is not visible, but rather a hypothetical "Dark Matter". The existence of Dark Matter has been postulated to explain the discrepancies between the estimated mass of visible matters in the galaxies, and their gravitational effects. Although it has been postulated for over 70 years, and has been commonly accepted by most scientists, the essence of the Dark Matter has not yet been understood. In particular, we still do not know what constitutes the Dark Matter. Direct detection of the Dark Matter is therefore one of the most important issues in physics.


2005 ◽  
Vol 20 (14) ◽  
pp. 1021-1036 ◽  
Author(s):  
GIANFRANCO BERTONE ◽  
DAVID MERRITT

Non-baryonic, or "dark", matter is believed to be a major component of the total mass budget of the Universe. We review the candidates for particle dark matter and discuss the prospects for direct detection (via interaction of dark matter particles with laboratory detectors) and indirect detection (via observations of the products of dark matter self-annihilations), focusing in particular on the Galactic center, which is among the most promising targets for indirect detection studies. The gravitational potential at the Galactic center is dominated by stars and by the supermassive black hole, and the dark matter distribution is expected to evolve on sub-parsec scales due to interaction with these components. We discuss the dominant interaction mechanisms and show how they can be used to rule out certain extreme models for the dark matter distribution, thus increasing the information that can be gleaned from indirect detection searches.


Author(s):  
Gianfranco Bertone

The spectacular advances of modern astronomy have opened our horizon on an unexpected cosmos: a dark, mysterious Universe, populated by enigmatic entities we know very little about, like black holes, or nothing at all, like dark matter and dark energy. In this book, I discuss how the rise of a new discipline dubbed multimessenger astronomy is bringing about a revolution in our understanding of the cosmos, by combining the traditional approach based on the observation of light from celestial objects, with a new one based on other ‘messengers’—such as gravitational waves, neutrinos, and cosmic rays—that carry information from otherwise inaccessible corners of the Universe. Much has been written about the extraordinary potential of this new discipline, since the 2017 Nobel Prize in physics was awarded for the direct detection of gravitational waves. But here I will take a different angle and explore how gravitational waves and other messengers might help us break the stalemate that has been plaguing fundamental physics for four decades, and to consolidate the foundations of modern cosmology.


2021 ◽  
Vol 71 (1) ◽  
pp. 279-313
Author(s):  
Gaia Lanfranchi ◽  
Maxim Pospelov ◽  
Philip Schuster

At the dawn of a new decade, particle physics faces the challenge of explaining the mystery of dark matter, the origin of matter over antimatter in the Universe, the apparent fine-tuning of the electroweak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves New Physics at mass scales comparable to that of familiar matter—below the GeV scale but with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and existing data may even provide hints of this possibility. Emboldened by the lessons of the LHC, a vibrant experimental program to discover such physics is underway, guided by a systematic theoretical approach that is firmly grounded in the underlying principles of the Standard Model. We give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs, and we focus in particular on accelerator-based experiments.


2008 ◽  
Vol 4 (S255) ◽  
pp. 56-60 ◽  
Author(s):  
Katherine Freese ◽  
Douglas Spolyar ◽  
Anthony Aguirre ◽  
Peter Bodenheimer ◽  
Paolo Gondolo ◽  
...  

AbstractThe first phase of stellar evolution in the history of the universe may be Dark Stars, powered by dark matter heating rather than by fusion. Weakly interacting massive particles, which are their own antiparticles, can annihilate and provide an important heat source for the first stars in the the universe. This talk presents the story of these Dark Stars. We make predictions that the first stars are very massive (~800M⊙), cool (6000 K), bright (~106L⊙), long-lived (~106years), and probable precursors to (otherwise unexplained) supermassive black holes. Later, once the initial DM fuel runs out and fusion sets in, DM annihilation can predominate again if the scattering cross section is strong enough, so that a Dark Star is born again.


2016 ◽  
Vol 25 (07) ◽  
pp. 1630018
Author(s):  
Rita Bernabei

Nearly a century of experimental observations and theoretical arguments have pointed out that a large fraction of the Universe is composed by dark matter particles. Many possibilities are open on the nature and interaction types of such relic particles. Moreover, the poor knowledge of many fundamental astrophysical, nuclear and particle physics aspects as well as of some experimental and theoretical parameters, the different used approaches and target materials, etc. make it challenging to understand the implication of some different experimental efforts. Some general arguments are addressed here. Future perspectives are mentioned.


2011 ◽  
Vol 20 (08) ◽  
pp. 1533-1538
Author(s):  
KOICHI HAMAGUCHI ◽  
N. YOKOZAKI

In gauge mediated SUSY breaking models, the gravitino is generally the lightest SUSY particle and can be a candidate for a dark matter. However the viable abundance of the gravitino requires rather low reheating temparature. With this low reheating temparature, it is difficult to explain the baryon asymmetry of the universe with thermal leptogenesis. We consider the extended scenario of the gauge mediation, which generates A-terms. In this extended scenario, soft leptogenesis works successfully with the low reheating temperature. Therefore we can explain the baryon asymmetry and gravitino dark matter simultaneously.


Sign in / Sign up

Export Citation Format

Share Document