scholarly journals Rotating cylindrical wormholes and energy conditions

2016 ◽  
Vol 31 (02n03) ◽  
pp. 1641022 ◽  
Author(s):  
K. A. Bronnikov ◽  
V. G. Krechet

We seek wormholes among rotating cylindrically symmetric configurations in general relativity. Exact wormhole solutions are presented with such sources of gravity as a massless scalar field, a cosmological constant, and a scalar field with an exponential potential. However, none of these solutions are asymptotically flat, which excludes the existence of wormhole entrances as local objects in our Universe. To overcome this difficulty, we try to build configurations with flat asymptotic regions using the cut-and-paste procedure: on both sides of the throat, a wormhole solution is matched to a properly chosen region of flat space-time at some surfaces [Formula: see text] and [Formula: see text]. It is shown, however, that if the source of gravity in the throat region is a scalar field with an arbitrary potential, then one or both thin shells appearing on [Formula: see text] and [Formula: see text] inevitably violate the null energy condition. Thus, although rotating wormhole solutions are easily found without exotic matter, such matter is still necessary for obtaining asymptotic flatness.

Author(s):  
Hüseyi̇n Aydın ◽  
Meli̇s Ulu Dog̃ru

In this paper, we examine massless scalar field by using unimodular [Formula: see text] theory. It is taken into account unimodular and cylindrically symmetric spacetime which provides convenience in researching black hole. The field equations in unimodular [Formula: see text] theory for given spacetime with massless scalar field and additional Bianchi identities are solved. Cylindrically symmetric anti-de Sitter (AdS)–Schwarzschild-like and AdS–Reissner–Nordström-like black hole spacetimes are achieved. Equations of motion are derived by using Hamiltonian. Orbits of massless test particles are depicted. Obtained line element asymptotically converges to dS/AdS spacetime. Weak and strong energy conditions of the massless scalar field are obtained with Raychaudhuri equations in unimodular [Formula: see text] theory. Also, stiff fluid interpretation of scalar field is reviewed.


2009 ◽  
Vol 24 (04) ◽  
pp. 277-289
Author(s):  
SUNGGEUN LEE ◽  
SOONKEON NAM

We investigate a string theoretic cosmological model in the context of the gauged Wess–Zumino–Witten model. Our model is based on a product of non-compact coset space and a spectator flat space; [ SL (2, R)/ U (1)]k × ℝ2. We extend the formerly studied semiclassical consideration with infinite Kac–Moody level k to a finite one. In this case, the tachyon field appears in the effective action, and we solve the Einstein equation to determine the behavior of tachyon as a function of time. We find that tachyon field dominates over dilaton field in early times. In particular, we consider the energy conditions of the matter fields consisting of the dilaton and the tachyon which affect the initial singularity. We find that not only the strong energy but also the null energy condition is violated.


2020 ◽  
Vol 98 (4) ◽  
pp. 364-374
Author(s):  
Saeeda Zia ◽  
M. Farasat Shamir

In this paper, we present the cylindrically symmetric solutions in a well-known modified theory, namely f(R, G) gravity. After driving the complete system of field equations, six different families of exact solutions using a viable f(R, G) gravity model have been discussed. Moreover, we have investigated the well-known Levi–Civita solution in modified gravity for the model f(R, G) = R2 + αGn for some suitable values of model parameters n and α. Null energy conditions are also calculated for all the obtained solutions. Some regions are observed where the null energy condition is violated, indicating the existence of cylindrical wormholes.


2013 ◽  
Vol 28 (01) ◽  
pp. 1350001 ◽  
Author(s):  
V. A. DE LORENCI ◽  
G. MENEZES ◽  
N. F. SVAITER

We investigate the effects of light-cone fluctuations over the renormalized vacuum expectation value of the stress–energy tensor of a real massless minimally coupled scalar field defined in a (d+1)-dimensional flat space–time with topology [Formula: see text]. For modeling the influence of light-cone fluctuations over the quantum field, we consider a random Klein–Gordon equation. We study the case of centered Gaussian processes. After taking into account all the realizations of the random processes, we present the correction caused by random fluctuations. The averaged renormalized vacuum expectation value of the stress–energy associated with the scalar field is presented.


1999 ◽  
Vol 14 (13) ◽  
pp. 2077-2089 ◽  
Author(s):  
F. CARUSO ◽  
R. DE PAOLA ◽  
N. F. SVAITER

The renormalized energy density of a massless scalar field defined in a D-dimensional flat space–time is computed in the presence of "soft" and "semihard" boundaries, modeled by some smoothly increasing potential functions. The sign of the renormalized energy densities for these different confining situations is investigated. The dependence of this energy on D for the cases of "hard" and "soft/semihard" boundaries are compared.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 127
Author(s):  
Yuri V. Grats ◽  
Pavel Spirin

The effects of vacuum polarization associated with a massless scalar field near pointlike source with a zero-range potential in three spatial dimensions are analyzed. The “physical” approach consists in the usage of direct delta-potential as a model of pointlike interaction. We use the Perturbation theory in the Fourier space with dimensional regularization of the momentum integrals. In the weak-field approximation, we compute the effects of interest. The “mathematical” approach implies the self-adjoint extension technique. In the Quantum-Field-Theory framework we consider the massless scalar field in a 3-dimensional Euclidean space with an extracted point. With appropriate boundary conditions it is considered an adequate mathematical model for the description of a pointlike source. We compute the renormalized vacuum expectation value ⟨ϕ2(x)⟩ren of the field square and the renormalized vacuum averaged of the scalar-field’s energy-momentum tensor ⟨Tμν(x)⟩ren. For the physical interpretation of the extension parameter we compare these results with those of perturbative computations. In addition, we present some general formulae for vacuum polarization effects at large distances in the presence of an abstract weak potential with finite-sized compact support.


Sign in / Sign up

Export Citation Format

Share Document