scholarly journals ZERO-POINT ENERGY OF MASSLESS SCALAR FIELDS IN THE PRESENCE OF SOFT AND SEMIHARD BOUNDARIES IN D DIMENSIONS

1999 ◽  
Vol 14 (13) ◽  
pp. 2077-2089 ◽  
Author(s):  
F. CARUSO ◽  
R. DE PAOLA ◽  
N. F. SVAITER

The renormalized energy density of a massless scalar field defined in a D-dimensional flat space–time is computed in the presence of "soft" and "semihard" boundaries, modeled by some smoothly increasing potential functions. The sign of the renormalized energy densities for these different confining situations is investigated. The dependence of this energy on D for the cases of "hard" and "soft/semihard" boundaries are compared.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Haidar Sheikhahmadi ◽  
Ali Aghamohammadi ◽  
Khaled Saaidi

During this work, using subtraction renormalization mechanism, zero point quantum fluctuations for bosonic scalar fields in a de-Sitter like background are investigated. By virtue of the observed value for spectral index,ns(k), for massive scalar field the best value for the first slow roll parameter,ϵ, is achieved. In addition, the energy density of vacuum quantum fluctuations for massless scalar field is obtained. The effects of these fluctuations on other components of the universe are studied. By solving the conservation equation, for some different examples, the energy density for different components of the universe is obtained. In the case which all components of the universe are in an interaction, the different dissipation functions,Q~i, are considered. The time evolution ofρDE(z)/ρcri(z)shows thatQ~=3γH(t)ρmhas the best agreement in comparison to observational data including CMB, BAO, and SNeIa data set.


1996 ◽  
Vol 11 (22) ◽  
pp. 4129-4146 ◽  
Author(s):  
AUGUST ROMEO

We evaluate the finite part of the regularized zero-point energy for a massless scalar field confined in the interior of a D-dimensional spherical region. While some insight is offered into the dimensional dependence of the WKB approximations by examining the residues of the spectral-zeta-function poles, a mode-sum technique based on an integral representation of the Bessel spectral zeta function is applied with the help of uniform asymptotic expansions (u.a.e.’s).


2011 ◽  
Vol 26 (17) ◽  
pp. 1281-1290 ◽  
Author(s):  
SWASTIK BHATTACHARYA ◽  
PANKAJ S. JOSHI

All the classes of static massless scalar field models currently available in the Einstein theory of gravity necessarily contain a strong curvature naked singularity. We obtain here a family of solutions for static massless scalar fields coupled to gravity, which does not have any strong curvature singularity. This class of models contain a thin shell of singular matter, which has a physical interpretation. The central curvature singularity is, however, avoided which is common to all static massless scalar field spacetime models known so far. Our result thus points out that the full class of solutions in this case may contain non-singular models, which is an intriguing possibility.


2012 ◽  
Vol 79 (3) ◽  
pp. 327-334 ◽  
Author(s):  
BO LEHNERT

AbstractAn attempt is made to explain dark energy and dark matter of the expanding universe in terms of the zero point vacuum energy. This analysis is mainly limited to later stages of an observable nearly flat universe. It is based on a revised formulation of the spectral distribution of the zero point energy, for an ensemble in a defined statistical equilibrium having finite total energy density. The steady and dynamic states are studied for a spherical cloud of zero point energy photons. The ‘antigravitational’ force due to its pressure gradient then represents dark energy, and its gravitational force due to the energy density represents dark matter. Four fundamental results come out of the theory. First, the lack of emitted radiation becomes reconcilable with the concepts of dark energy and dark matter. Second, the crucial coincidence problem of equal orders of magnitude of mass density and vacuum energy density cannot be explained by the cosmological constant, but is resolved by the present variable concepts, which originate from the same photon gas balance. Third, the present approach becomes reconcilable with cosmical dimensions and with the radius of the observable universe. Fourth, the deduced acceleration of the expansion agrees with the observed one. In addition, mass polarity of a generalized gravitation law for matter and antimatter is proposed as a source of dark flow.


2008 ◽  
Vol 23 (05) ◽  
pp. 359-369 ◽  
Author(s):  
SONGBAI CHEN ◽  
JILIANG JING

Using the technique of spectral decomposition, we investigated the late-time tails of massless and massive coupled scalar fields in the background of a black hole with a global monopole. We found that due to the existence of the coupling between the scalar and gravitational fields, the massless scalar field decay faster at timelike infinity i+, and so does the massive one in the intermediate late time. But the asymptotically late-time tail for the massive scalar field is not affected and its decay rate is still t-5/6.


2015 ◽  
Vol 30 (13) ◽  
pp. 1550077 ◽  
Author(s):  
J. Ambjørn ◽  
A. Görlich ◽  
J. Jurkiewicz ◽  
H. Zhang

Causal Dynamical Triangulations (CDT) provide a non-perturbative formulation of Quantum Gravity assuming the existence of a global time foliation. In our earlier study we analyzed the effect of including d copies of a massless scalar field in the two-dimensional CDT model with imaginary time. For d > 1 we observed the formation of a "blob", somewhat similar to that observed in four-dimensional CDT without matter. In the two-dimensional case the "blob" has a Hausdorff dimension DH = 3. In this paper, we study the spectral dimension DS of the two-dimensional CDT-universe, both for d = 0 (pure gravity) and d = 4. We show that in both cases the spectral dimension is consistent with DS = 2.


2016 ◽  
Vol 31 (02n03) ◽  
pp. 1641022 ◽  
Author(s):  
K. A. Bronnikov ◽  
V. G. Krechet

We seek wormholes among rotating cylindrically symmetric configurations in general relativity. Exact wormhole solutions are presented with such sources of gravity as a massless scalar field, a cosmological constant, and a scalar field with an exponential potential. However, none of these solutions are asymptotically flat, which excludes the existence of wormhole entrances as local objects in our Universe. To overcome this difficulty, we try to build configurations with flat asymptotic regions using the cut-and-paste procedure: on both sides of the throat, a wormhole solution is matched to a properly chosen region of flat space-time at some surfaces [Formula: see text] and [Formula: see text]. It is shown, however, that if the source of gravity in the throat region is a scalar field with an arbitrary potential, then one or both thin shells appearing on [Formula: see text] and [Formula: see text] inevitably violate the null energy condition. Thus, although rotating wormhole solutions are easily found without exotic matter, such matter is still necessary for obtaining asymptotic flatness.


1996 ◽  
Vol 74 (1-2) ◽  
pp. 17-28 ◽  
Author(s):  
Slava G. Turyshev

A class of exact static spherically symmetric solutions of the Einstein–Maxwell gravity coupled to a massless scalar field is obtained in the harmonic coordinates of Minkowski space-time. For each value of the coupling constant a, these solutions are characterized by a set of three parameters, the physical mass μ0, the electric charge Q0 and the scalar-field parameter k. We find that the solutions for both gravitational and electromagnetic fields are not only affected by the scalar field, but also the nontrivial coupling with matter constrains the scalar field itself. In particular, we find that the constant k differs generically from ±1/2, falling into the interval [Formula: see text]. It takes these values only for black holes or in the case when a scalar field [Formula: see text] is totally decoupled from the matter. Our results differ from those previously obtained in that the presence of an arbitrary coupling constant a gives an opportunity to rule out the nonphysical horizons. In one of the special cases, the obtained solution corresponds to a charged dilatonic black hole with only one horizon μ+ and hence to the Kaluza–Klein case. The most remarkable property of this result is that the metric, the scalar curvature, and both the electromagnetic and scalar fields are all regular on this surface. Moreover, while studying the dilaton charge, we found that the inclusion of the scalar field in the theory resulted in a contraction of the horizon. The behavior of the scalar curvature was analysed.


Sign in / Sign up

Export Citation Format

Share Document