scholarly journals Properties of size-dependent models having quasiperiodic boundary conditions

2018 ◽  
Vol 33 (01) ◽  
pp. 1850008 ◽  
Author(s):  
E. Cavalcanti ◽  
C. A. Linhares ◽  
A. P. C. Malbouisson

Boundary condition effects are explored for size-dependent models in thermal equilibrium. Scalar and fermionic models are used for [Formula: see text] (films), [Formula: see text] (hollow cylinder) and [Formula: see text] (ring). For all models, a minimal length is found, below which no thermally-induced phase transition occurs. Using quasiperiodic boundary condition controlled by a contour parameter [Formula: see text] ([Formula: see text] is a periodic boundary condition and [Formula: see text] is an antiperiodic condition), it results that the minimal length depends directly on the value of [Formula: see text]. It is also argued that this parameter can be associated to an Aharonov–Bohm phase.

1988 ◽  
Vol 8 (8) ◽  
pp. 301-358 ◽  

AbstractWe analyse isospectral sets of potentials associated to a given ‘generalized periodic’ boundary condition in SL(2, R) for the Sturm-Liouville equation on the unit interval. This is done by first studying the larger manifold M of all pairs of boundary conditions and potentials with a given spectrum and characterizing the critical points of the map from M to the trace a + d Isospectral sets appear as slices of M whose geometry is determined by the critical point structure of the trace function. This paper completes the classification of isospectral sets for all real self-adjoint boundary conditions.


Author(s):  
Shanhong Ji ◽  
Feng Liu

A quasi-three-dimensional multigrid Navier-Stokes solver on single and multiple passage domains is presented for solving unsteady flows around oscillating turbine and compressor blades. The conventional “direct store” method is used for applying the phase-shifted periodic boundary condition over a single blade passage. A parallel version of the solver using the Message Passing Interface (MPI) standard is developed for multiple passage computations. In the parallel multiple passage computations, the phase-shifted periodic boundary condition is converted to simple in-phase periodic condition. Euler and Navier-Stokes solutions are obtained for unsteady flows through an oscillating turbine cascade blade row with both the sequential and the parallel code. It is found that the parallel code offers almost linear speedup with multiple CPUs. In addition, significant improvement is achieved in convergence of the computation to a periodic unsteady state in the parallel multiple passage computations due to the use of in-phase periodic boundary conditions as compared to that in the single passage computations with phase-lagged periodic boundary conditions via the “direct store” method. The parallel Navier-Stokes code is also used to calculate the flow through an oscillating compressor cascade. Results are compared with experimental data and computations by other authors.


1999 ◽  
Vol 40 (11) ◽  
pp. 1306-1313 ◽  
Author(s):  
Masato Shimono ◽  
Hidehiro Onodera ◽  
Tetsuro Suzuki

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Jamilu Abubakar ◽  
Piyachat Borisut ◽  
Kanokwan Sitthithakerngkiet

Abstract This study investigates the solutions of an impulsive fractional differential equation incorporated with a pantograph. This work extends and improves some results of the impulsive fractional differential equation. A differential equation of an impulsive fractional pantograph with a more general anti-periodic boundary condition is proposed. By employing the well-known fixed point theorems of Banach and Krasnoselskii, the existence and uniqueness of the solution of the proposed problem are established. Furthermore, two examples are presented to support our theoretical analysis.


2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Huiqi Li ◽  
Glenn McDowell ◽  
John de Bono

Abstract A new time-delayed periodic boundary condition (PBC) has been proposed for discrete element modelling (DEM) of periodic structures subject to moving loads such as railway track based on a box test which is normally used as an element testing model. The new proposed time-delayed PBC is approached by predicting forces acting on ghost particles with the consideration of different loading phases for adjacent sleepers whereas a normal PBC simply gives the ghost particles the same contact forces as the original particles. By comparing the sleeper in a single sleeper test with a fixed boundary, a normal periodic boundary and the newly proposed time-delayed PBC (TDPBC), the new TDPBC was found to produce the closest settlement to that of the middle sleeper in a three-sleeper test which was assumed to be free of boundary effects. It appears that the new TDPBC can eliminate the boundary effect more effectively than either a fixed boundary or a normal periodic cell. Graphic abstract


Author(s):  
G Atefi ◽  
M A Abdous ◽  
A Ganjehkaviri ◽  
N Moalemi

The objective of this article is to derive an analytical solution for a two-dimensional temperature field in a hollow cylinder, which is subjected to a periodic boundary condition at the outer surface, while the inner surface is insulated. The material is assumed to be homogeneous and isotropic with time-independent thermal properties. Because of the time-dependent term in the boundary condition, Duhamel's theorem is used to solve the problem for a periodic boundary condition. The periodic boundary condition is decomposed using the Fourier series. This condition is simulated with harmonic oscillation; however, there are some differences with the real situation. To solve this problem, first of all the boundary condition is assumed to be steady. By applying the method of separation of variables, the temperature distribution in a hollow cylinder can be obtained. Then, the boundary condition is assumed to be transient. In both these cases, the solutions are separately calculated. By using Duhamel's theorem, the temperature distribution field in a hollow cylinder is obtained. The final result is plotted with respect to the Biot and Fourier numbers. There is good agreement between the results of the proposed method and those reported by others for this geometry under a simple harmonic boundary condition.


Author(s):  
J. C. Jaeger

The object of this note is to indicate a numerical method for finding periodic solutions of a number of important problems in conduction of heat in which the boundary conditions are periodic in the time and may be linear or non-linear. One example is that of a circular cylinder which is heated by friction along the generators through a rotating arc of its circumference, the remainder of the surface being kept at constant temperature; here the boundary conditions are linear but mixed. Another example, which will be discussed in detail below, is that of the variation of the surface temperature of the moon during a lunation; in this case the boundary condition is non-linear. In all cases the thermal properties of the solid will be assumed to be independent of temperature. Only the semi-infinite solid will be considered here, though the method applies equally well to other cases.


Sign in / Sign up

Export Citation Format

Share Document