scholarly journals Magnetic charge and photon mass: Physical string singularities, Dirac condition, and magnetic confinement

2018 ◽  
Vol 33 (11) ◽  
pp. 1850064
Author(s):  
Timothy J. Evans ◽  
Douglas Singleton

We find exact, simple solutions to the Proca version of Maxwell’s equations with magnetic sources. Several properties of these solutions differ from the usual case of magnetic charge with a massless photon: (i) the string singularities of the usual 3-vector potentials become real singularities in the magnetic fields; (ii) the different 3-vector potentials become gauge inequivalent and physically distinct solutions; (iii) the magnetic field depends on r and [Formula: see text] and thus is no longer rotationally symmetric; (iv) a combined system of electric and magnetic charge carries a field angular momentum even when the electric and magnetic charges are located at the same place (i.e. for dyons); (v) for these dyons, one recovers the standard Dirac condition despite the photon being massive. We discuss the reason for this. We conclude by proposing that the string singularity in the magnetic field of an isolated magnetic charge suggests a confinement mechanism for magnetic charge, similar to the flux tube confinement of quarks in QCD.

2012 ◽  
Vol 27 (40) ◽  
pp. 1250233 ◽  
Author(s):  
ROSY TEH ◽  
BAN-LOONG NG ◽  
KHAI-MING WONG

We present finite energy SU(2) Yang–Mills–Higgs particles of one-half topological charge. The magnetic fields of these solutions at spatial infinity correspond to the magnetic field of a positive one-half magnetic monopole at the origin and a semi-infinite Dirac string on one-half of the z-axis carrying a magnetic flux of [Formula: see text] going into the origin. Hence the net magnetic charge is zero. The gauge potentials are singular along one-half of the z-axis, elsewhere they are regular.


2018 ◽  
Vol 14 (S342) ◽  
pp. 201-204
Author(s):  
Xinwu Cao

AbstractIt is still a mystery why only a small fraction of quasars contain relativistic jets. A strong magnetic field is a necessary ingredient for jet formation. Gas falls from the Bondi radius RB nearly freely to the circularization radius Rc, and a thin accretion disk is formed within Rc We suggest that the external weak magnetic field threading interstellar medium is substantially enhanced in this region, and the magnetic field at Rc can be sufficiently strong to drive outflows from the disk if the angular velocity of the gas is low at RB. In this case, the magnetic field is efficiently dragged in the disk, because most angular momentum of the disk is removed by the outflows that lead to a significantly high radial velocity. The strong magnetic field formed in this way may accelerate jets in the region near the black hole, either by the Blandford-Payne or/and Blandford-Znajek mechanisms. If the angular velocity of the circumnuclear gas is low, the field advection in the thin disk is inefficient, and it will appear as a radio-quiet (RQ) quasar.


2019 ◽  
Vol 623 ◽  
pp. L7 ◽  
Author(s):  
L. Haemmerlé ◽  
G. Meynet

Context. Supermassive stars (SMSs) are candidates for being progenitors of supermassive quasars at high redshifts. However, their formation process requires strong mechanisms that would be able to extract the angular momentum of the gas that the SMSs accrete. Aims. We investigate under which conditions the magnetic coupling between an accreting SMS and its winds can remove enough angular momentum for accretion to proceed from a Keplerian disc. Methods. We numerically computed the rotational properties of accreting SMSs that rotate at the ΩΓ-limit and estimated the magnetic field that is required to maintain the rotation velocity at this limit using prescriptions from magnetohydrodynamical simulations of stellar winds. Results. We find that a magnetic field of 10 kG at the stellar surface is required to satisfy the constraints on stellar rotation from the ΩΓ-limit. Conclusions. Magnetic coupling between the envelope of SMSs and their winds could allow for SMS formation by accretion from a Keplerian disc, provided the magnetic field is at the upper end of present-day observed stellar fields. Such fields are consistent with primordial origins.


2011 ◽  
Vol 7 (S279) ◽  
pp. 357-358
Author(s):  
Sergey G. Moiseenko ◽  
Gennady S. Bisnovatyi-Kogan

AbstractWe present results of the simulation of a magneto-rotational supernova explosion. We show that, due to the differential rotation of the collapsing iron core, the magnetic field increases with time. The magnetic field transfers angular momentum and a MHD shock wave forms. This shock wave produces the supernova explosion. The explosion energy computed in our simulations is 0.5-2.5 ċ 1051erg. We used two different equations of state for the simulations. The results are rather similar.


2014 ◽  
Vol 29 (35) ◽  
pp. 1450189
Author(s):  
V. V. Sreedhar

A general method for deriving exact expressions for vector potentials produced by arbitrarily knotted solenoids is presented. It consists of using simple physics ideas from magnetostatics to evaluate the magnetic field in a surrogate problem. The latter is obtained by modeling the knot with wire segments carrying steady currents on a cubical lattice. The expressions for a 31 (trefoil) and a 41 (figure-eight) knot are explicitly worked out. The results are of some importance in the study of the Aharonov–Bohm effect generalized to a situation in which charged particles moving through force-free regions are scattered by fluxes confined to the interior of knotted impenetrable tubes.


1974 ◽  
Vol 60 ◽  
pp. 275-292 ◽  
Author(s):  
R. D. Davies

Observations of Class I OH maser sources show a range of features which are predicted on the basis of Zeeman splitting in a source magnetic field. Magnetic field strengths of 2 to 7 mG are derived for eight OH maser sources. The fields in all the clouds are directed in the sense of galactic rotation. A model of W3 OH is proposed which incorporates the magnetic field data. It is shown that no large amount of magnetic flux or angular momentum has been lost since the condensation from the interstellar medium began.


1987 ◽  
Vol 115 ◽  
pp. 287-300
Author(s):  
Yutaka Uchida ◽  
Norio Kaifu ◽  
Kazunari Shibata ◽  
Saeko S. Hayashi ◽  
Tetsuo Hasegawa

Observations of the structure and the velocity field in the L1551 bipolar flow were made with the 45m telescope at Nobeyama in the 115GHz 12CO J = 1 – 0 line with high spatial resolution. It was found that the bipolar flow lobes have a clear hollow cylindrical structure and show evidence of a helical velocity field. They appear to rotate in the same direction as the CS disk found by Kaifu et al. (1984). The velocity of the flow in the bipolar directions increases with distance up to ∼ 3′ from the central object, IRS 5. These characteristics coincide with those predicted by the magnetodynamic theory proposed by Uchida and Shibata and indicate the essential importance of the magnetic field in producing such flows and also in the star-formation process itself through the enhancement of angular-momentum loss.


2019 ◽  
Vol 491 (1) ◽  
pp. L34-L39 ◽  
Author(s):  
Sivan Ginzburg ◽  
Eugene Chiang

ABSTRACT During the runaway phase of their formation, gas giants fill their gravitational spheres of influence out to Bondi or Hill radii. When runaway ends, planets shrink several orders of magnitude in radius until they are comparable in size to present-day Jupiter; in 1D models, the contraction occurs on the Kelvin–Helmholtz time-scale tKH, which is initially a few thousand years. However, if angular momentum is conserved, contraction cannot complete, as planets are inevitably spun up to their breakup periods Pbreak. We consider how a circumplanetary disc (CPD) can de-spin a primordially magnetized gas giant and remove the centrifugal barrier, provided the disc is hot enough to couple to the magnetic field, a condition that is easier to satisfy at later times. By inferring the planet’s magnetic field from its convective cooling luminosity, we show that magnetic spin-down times are shorter than contraction times throughout post-runaway contraction: tmag/tKH ∼ (Pbreak/tKH)1/21 ≲ 1. Planets can spin-down until they corotate with the CPD’s magnetospheric truncation radius, at a period Pmax/Pbreak ∼ (tKH/Pbreak)1/7. By the time the disc disperses, Pmax/Pbreak ∼ 20–30; further contraction at fixed angular momentum can spin planets back up to ∼10Pbreak, potentially explaining observed rotation periods of giant planets and brown dwarfs.


1989 ◽  
Vol 67 (10) ◽  
pp. 971-973
Author(s):  
K. D. Krori ◽  
J. C. Sarmah

In this paper, we present a study of the stable polar trajectories ([Formula: see text] = constant plane) of neutral test particles around a Schwarzschild black hole embedded in a magnetic field. We also show how the nature of these trajectories changes with the variation in the angular momentum of the test particle and the magnetic field parameter.


Sign in / Sign up

Export Citation Format

Share Document