SYNTHESIS AND CHARACTERIZATION OF TERNARY AL-C-N COMPOUND

2002 ◽  
Vol 16 (06n07) ◽  
pp. 1132-1137 ◽  
Author(s):  
N. JIANG ◽  
S. XU ◽  
K. N. OSTRIKOV ◽  
E. L. TSAKADZE ◽  
J. D. LONG ◽  
...  

An attempt for modification of carbon nitride material by introduction of Al to form a ternary Al-C-N compound in a thin film deposited using inductively coupled plasma (ICP) assisted DC magnetron sputtering is reported. Optical emission spectroscopy (OES) is used for in-situ observation and identification of reactive species. The films were characterized using x-ray photoelectron spectroscopy (XPS) and x-ray diffraction spectroscopy (XRD). The results indicate that C-N bond is formed in the plasma. The XPS narrow scam spectra confirm the existence of C-Al, sp2C-N and sp3C-N bonds. Elemental proportion of carbon increases with the CH4/N2 flow rate ratio, and has a tendency to saturate. The film is dominated by c-AlN (111), mixed with Al4C3 and AlCN ternary compound.

2015 ◽  
Vol 733 ◽  
pp. 292-295
Author(s):  
Bei Ping Yang ◽  
Li Qiang Chen ◽  
Xiu Mei Lin ◽  
Ming Xia Zhu

A new solid proton conductor Na7[CoCrW11O39 (H2O)]·15H2O has been synthesized for the first time. The percentage composition of the product were determined by inductively coupled plasma (ICP) and X-ray photoelectron spectroscopy (XPS). The product was characterized by infrared spectroscopy (IR) and X-ray diffraction (XRD), which indicate it possesses the Keggin structure. The TG-DTA curve shows the sequence of water loss in the compound, the amount of the loss, as well as the thermostability. Conductivity of the compound was investigated by four-electrode method at room temperature and different measuring temperatures, the results reveal that its proton conductivity is 9.42×10−7S·cm-1 at 25°C.


Author(s):  
Yangyang Zhang ◽  
Chuan Shao ◽  
Dongling Qin ◽  
Gang Yang

Solid acid-catalyzed dehydration of fructose to produce 5-hydroxymethylfurfural (5-HMF) has been a hotspot in biomass conversion research in recent years. In this study, a novel SAPO‑34‑based catalyst was prepared by consecutive steps of titanium doping, sulfuric acid impregnation, and sulfonic acid functionalization. Characterization of the catalyst with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), inductively coupled plasma optical emission spectrometer (ICP-OES), and acid-base titration revealed different pore structures and more acid content compared to SAPO‑34. The catalyst was applied to the preparation of 5-HMF by dehydration of fructose, and the maximum yield (74.0%) of 5-HMF was obtained by reacting in dimethyl sulfoxide (DMSO) at 170 °C for 50 min. In addition, the applicability of the catalytic system to other substrates and the stability of the catalyst after five cycles were investigated, which are valuable for further probing on the concerned aspects.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Min Fu ◽  
Weiling Luan ◽  
Shan-Tung Tu ◽  
Leslaw Mleczko

Highly photoluminescent core/shell CuInS2/ZnS (CIS/ZnS) nanocrystals were synthesized. Zinc acetate and dodecanethiol in octadecene solvent were used for shell growth. The structure and composition of QDs were investigated with inductively coupled plasma-optical emission spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The crystal phase of CIS was tetragonal chalcopyrite. Based on X-ray diffraction analysis, it has been concluded that the growth of the ZnS shell did not affect the phase structure of CuInS2(CIS). Photoluminescence (PL) quantum yield (QY) of CIS increased to 80% after epitaxial growth of ZnS, and the PL emission wavelength can be feasibly tuned to be in the range of 560–710 nm by adjusting shell growth time. The superb photostability with high PL QY of CIS/ZnS nanocrystals is ascribed to the gradient of the chemical composition that has been formed between the core and the shell.


2018 ◽  
Vol 941 ◽  
pp. 21-26
Author(s):  
Gloria Basanta ◽  
Ana L. Rivas ◽  
Ervis Díaz ◽  
Carlos Parra

The present work has been undertaken to assess the evolution of dissolution process of large dendritic precipitates in a V-Nb-Ti microalloyed steel. The study was performed by reheating the samples at 1250°C, simulating the industrial reheating practices at laboratory scale and in situ, following industrial profile; afterwards the samples were quenched in 10%NaCl aqueous solution. The characterization of the material was carried out by scanning electron microscopy accompanied with dispersive energy spectrometry, and chemical analysis by inductively coupled plasma optical emission spectrometry. The results showed a partial dissolution of dendritic precipitates. This process ocurred by a progressive dissolving the Nb-rich shells formed over cuboidal particles and primary arm of well-faceted dendritic precipitates, and by fragmentation and spheroidization of secondary branches. These processes gave rise to spherical Nb rich precipitates and cuboidal particles at the reheating conditions used in this study. Both type of particles contain vanadium.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 530 ◽  
Author(s):  
Chaoqun Bian ◽  
Xiao Wang ◽  
Lan Yu ◽  
Fen Zhang ◽  
Jie Zhang ◽  
...  

The incorporation of metal heteroatoms into zeolites is an effective modification strategy for enhancing their catalytic performance. Herein, for the first time we report a generalized methodology for inserting metal heteroatoms (such as Sn, Fe, Zn, and Co) into the layered zeolite precursor RUB-36 via interlayer expansion by using the corresponding metal acetylacetate salt. Through this generalized methodology, Sn-JHP-1, Fe-JHP-1, Zn-JHP-1 and Co-JHP-1 zeolites could be successfully prepared by the reaction of RUB-36 and corresponding metal acetylacetate salt at 180 °C for 24 h in the presence of HCl solution. As a typical example, Sn-JHP-1 and calcined Sn-JHP-1 (Sn-JHP-2) zeolite is well characterized by the X-ray diffraction (XRD), diffuse reflectance ultraviolet-visible (UV-Vis), inductively coupled plasma (ICP), N2 sorption, temperature-programmed-desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS) techniques, which confirm the expansion of adjacent interlayers and thus the incorporation of isolated Sn sites within the zeolite structure. Notably, the obtained Sn-JHP-2 zeolite sample shows enhanced catalytic performance in the conversion of glucose to levulinic acid (LA) reaction.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2695 ◽  
Author(s):  
Mhadmhan ◽  
Marquez-Medina ◽  
Romero ◽  
Reubroycharoen ◽  
Luque

We have successfully incorporated iron species into mesoporous aluminosilicates (AlSBA15) using a simple mechanochemical milling method. The catalysts were characterized by nitrogen physisorption, inductively coupled plasma mass spectrometry (ICP-MS), pyridine (PY) and 2,6-dimethylpyridine (DMPY) pulse chromatography titration, powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX). The catalysts were tested in the N-alkylation reaction of aniline with benzyl alcohol for imine production. According to the results, the iron sources, acidity of catalyst and reaction conditions were important factors influencing the reaction. The catalyst showed excellent catalytic performance, achieving 97% of aniline conversion and 96% of imine selectivity under optimized conditions.


2008 ◽  
Vol 22 (15) ◽  
pp. 1487-1495 ◽  
Author(s):  
YEXIA FAN ◽  
HONGTAO LI ◽  
LIANCHENG ZHAO

Congruent Ce (0.1 wt %): Cu (0.05 wt %): LiNbO 3 single crystals doped with 0, 1, 3, 4, 5, 6 mol% MgO respectively were grown by the Czochrolski method in air along the C direction. The inductively coupled plasma optical emission/mass spectrometry (ICP-OE/MS), the X-ray powder diffraction (XRD), the differential thermal analysis (DTA), the ultraviolet-visible (UV-Vis) absorption spectra and the infrared (IR) absorption spectrum were measured and discussed in terms of the spectroscopic characterization and the defect structure of the Mg:Ce:Cu:LiNbO 3 crystals. The results indicated that the Mg:Ce:Cu:LiNbO 3 crystal grown from the congruent composition melt showed large [ Li ]/[ Nb ] ratios, which was closer to stoichiometry, an increase in the Curie temperature and a non-linear shift in the absorption edge with MgO concentration increasing. The threshold concentration of MgO in Mg:Ce:Cu:LiNbO 3 of nearly 5.52 mol% was estimated.


2011 ◽  
Vol 391-392 ◽  
pp. 1132-1137
Author(s):  
Su Ping Huang ◽  
Jun Zhu ◽  
Ke Chao Zhou

Luminescence behaviors and morphology of Eu3+doped hydroxyapatite synthesized under different pH values were well investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Inductively Coupled Plasma (ICP) (ICP–PLASMA 1000), and photoluminescence (PL) spectroscopy. Results revealed that With pH values increased from 6.5 to 10.0, the morphology of nano-Eu:HA particles changes from rod particles to equiaxed particles. The actual doping concentration and aspect ratio of Eu3+-doped HA decreased with the increasing of pH value. At the same time, the fluorescence intensity also tends to weakly lower with the increasing of pH value, which indicated that the luminescence properties mainly depended on the actual Eu3+doping concentration, the influences of morphology on the luminescence properties were slight.


2018 ◽  
Vol 7 (1) ◽  
pp. 38-44 ◽  
Author(s):  
А. Рашковский ◽  
A. Rashkovskiy ◽  
Е. Политова ◽  
E. Politova ◽  
А. Меркушкин ◽  
...  

In this investigation the structure of «green» silica maid with rice husk has been studied by methods of physicochemical analysis. By method of X-ray diffraction it has been found that the samples of «green» silica powders are completely amorphous, and the observed amorphous halo consists of two components. By method of scanning electron microscopy it has been revealed that nano-particles of «green» SiO2 can form agglomerates and microstructures with dimensions from 0,1 to 500 microns, containing numerous pores, which presence has been confirmed by sorption measurements. By method of mass spectrometry with inductively coupled plasma has been found the presence of aluminum, titanium and nickel mechanical impurities in the «green» SiO2 powders. By method of X-ray photoelectron spectroscopy significant amount of fluorine atoms in «green» silica (up to 5% (at.)) has been revealed, which could be introduced in SiO2 in the process of its preparation. In such a case, it was found that fluorine interacts with «green» silica by means of two mechanisms, leading to appearance of two phases within fluorinated powders of «green» SiO2.


2020 ◽  
Author(s):  
Daniela Novembre ◽  
Domingo Gimeno ◽  
Alessandro Del Vecchio

Abstract This work focuses on the hydrothermal synthesis of Na-P1 zeolite by using a kaolinite rock coming from Romana (Sassari, Italy). The kaolin is calcined at a temperature of 650 °C and then mixed with calculated quantities of NaOH. The synthesis runs are carried out at ambient pressure and at variable temperatures of 65 ° and 100 °C. For the first time compared to the past, the Na-P1 zeolite is synthesized without the use of additives and through a protocol that reduces both temperatures and synthesis times. The synthesis products are analysed by X-ray diffraction, high temperature X-ray diffraction, infrared spectroscopy, scanning electron microscopy and inductively coupled plasma optical emission spectrometry. The cell parameters are calculated using the Rietveld method. Density and specific surface area are also calculated. The absence of amorphous phases and impurities in synthetic powders is verified through quantitative phase analysis using the combined Rietveld and reference intensity ratio methods.The results make the experimental protocol very promising for an industrial transfer.


Sign in / Sign up

Export Citation Format

Share Document