Preparation and Characterization of Na7[CoCrW11O39(H2O)]·15H2O for Electrical Conductivity

2015 ◽  
Vol 733 ◽  
pp. 292-295
Author(s):  
Bei Ping Yang ◽  
Li Qiang Chen ◽  
Xiu Mei Lin ◽  
Ming Xia Zhu

A new solid proton conductor Na7[CoCrW11O39 (H2O)]·15H2O has been synthesized for the first time. The percentage composition of the product were determined by inductively coupled plasma (ICP) and X-ray photoelectron spectroscopy (XPS). The product was characterized by infrared spectroscopy (IR) and X-ray diffraction (XRD), which indicate it possesses the Keggin structure. The TG-DTA curve shows the sequence of water loss in the compound, the amount of the loss, as well as the thermostability. Conductivity of the compound was investigated by four-electrode method at room temperature and different measuring temperatures, the results reveal that its proton conductivity is 9.42×10−7S·cm-1 at 25°C.

2014 ◽  
Vol 937 ◽  
pp. 224-228 ◽  
Author(s):  
Li Qiang Chen ◽  
Xiu Mei Lin ◽  
Ming Xia Zhu ◽  
Li Mei Dai

A new solid high-proton conductor Na7[CoW11O39Cd (H2O)]·12H2O has been synthesized for the first time. The percentage composition of the product were determined by Inductively coupled plasma (ICP) and X-ray photoelectron spectroscopy (XPS). The product was characterized by infrared spectroscopy (IR) and X-ray diffraction (XRD), which indicate it possesses the Keggin structure. The TG-DTA curve shows the sequence of water loss in the compound, the amount of the loss, as well as the thermostability. Conductivity of the compound was investigated by four-electrode method at room temperature and different measuring temperatures, the results reveal that its proton conductivity is 4.87×10−4S·cm-1at 27oC and the activation energy for proton conduction is 15.31 kJ/mol.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 530 ◽  
Author(s):  
Chaoqun Bian ◽  
Xiao Wang ◽  
Lan Yu ◽  
Fen Zhang ◽  
Jie Zhang ◽  
...  

The incorporation of metal heteroatoms into zeolites is an effective modification strategy for enhancing their catalytic performance. Herein, for the first time we report a generalized methodology for inserting metal heteroatoms (such as Sn, Fe, Zn, and Co) into the layered zeolite precursor RUB-36 via interlayer expansion by using the corresponding metal acetylacetate salt. Through this generalized methodology, Sn-JHP-1, Fe-JHP-1, Zn-JHP-1 and Co-JHP-1 zeolites could be successfully prepared by the reaction of RUB-36 and corresponding metal acetylacetate salt at 180 °C for 24 h in the presence of HCl solution. As a typical example, Sn-JHP-1 and calcined Sn-JHP-1 (Sn-JHP-2) zeolite is well characterized by the X-ray diffraction (XRD), diffuse reflectance ultraviolet-visible (UV-Vis), inductively coupled plasma (ICP), N2 sorption, temperature-programmed-desorption of ammonia (NH3-TPD) and X-ray photoelectron spectroscopy (XPS) techniques, which confirm the expansion of adjacent interlayers and thus the incorporation of isolated Sn sites within the zeolite structure. Notably, the obtained Sn-JHP-2 zeolite sample shows enhanced catalytic performance in the conversion of glucose to levulinic acid (LA) reaction.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1132-1137 ◽  
Author(s):  
N. JIANG ◽  
S. XU ◽  
K. N. OSTRIKOV ◽  
E. L. TSAKADZE ◽  
J. D. LONG ◽  
...  

An attempt for modification of carbon nitride material by introduction of Al to form a ternary Al-C-N compound in a thin film deposited using inductively coupled plasma (ICP) assisted DC magnetron sputtering is reported. Optical emission spectroscopy (OES) is used for in-situ observation and identification of reactive species. The films were characterized using x-ray photoelectron spectroscopy (XPS) and x-ray diffraction spectroscopy (XRD). The results indicate that C-N bond is formed in the plasma. The XPS narrow scam spectra confirm the existence of C-Al, sp2C-N and sp3C-N bonds. Elemental proportion of carbon increases with the CH4/N2 flow rate ratio, and has a tendency to saturate. The film is dominated by c-AlN (111), mixed with Al4C3 and AlCN ternary compound.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2695 ◽  
Author(s):  
Mhadmhan ◽  
Marquez-Medina ◽  
Romero ◽  
Reubroycharoen ◽  
Luque

We have successfully incorporated iron species into mesoporous aluminosilicates (AlSBA15) using a simple mechanochemical milling method. The catalysts were characterized by nitrogen physisorption, inductively coupled plasma mass spectrometry (ICP-MS), pyridine (PY) and 2,6-dimethylpyridine (DMPY) pulse chromatography titration, powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX). The catalysts were tested in the N-alkylation reaction of aniline with benzyl alcohol for imine production. According to the results, the iron sources, acidity of catalyst and reaction conditions were important factors influencing the reaction. The catalyst showed excellent catalytic performance, achieving 97% of aniline conversion and 96% of imine selectivity under optimized conditions.


2011 ◽  
Vol 391-392 ◽  
pp. 1132-1137
Author(s):  
Su Ping Huang ◽  
Jun Zhu ◽  
Ke Chao Zhou

Luminescence behaviors and morphology of Eu3+doped hydroxyapatite synthesized under different pH values were well investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Inductively Coupled Plasma (ICP) (ICP–PLASMA 1000), and photoluminescence (PL) spectroscopy. Results revealed that With pH values increased from 6.5 to 10.0, the morphology of nano-Eu:HA particles changes from rod particles to equiaxed particles. The actual doping concentration and aspect ratio of Eu3+-doped HA decreased with the increasing of pH value. At the same time, the fluorescence intensity also tends to weakly lower with the increasing of pH value, which indicated that the luminescence properties mainly depended on the actual Eu3+doping concentration, the influences of morphology on the luminescence properties were slight.


2018 ◽  
Vol 7 (1) ◽  
pp. 38-44 ◽  
Author(s):  
А. Рашковский ◽  
A. Rashkovskiy ◽  
Е. Политова ◽  
E. Politova ◽  
А. Меркушкин ◽  
...  

In this investigation the structure of «green» silica maid with rice husk has been studied by methods of physicochemical analysis. By method of X-ray diffraction it has been found that the samples of «green» silica powders are completely amorphous, and the observed amorphous halo consists of two components. By method of scanning electron microscopy it has been revealed that nano-particles of «green» SiO2 can form agglomerates and microstructures with dimensions from 0,1 to 500 microns, containing numerous pores, which presence has been confirmed by sorption measurements. By method of mass spectrometry with inductively coupled plasma has been found the presence of aluminum, titanium and nickel mechanical impurities in the «green» SiO2 powders. By method of X-ray photoelectron spectroscopy significant amount of fluorine atoms in «green» silica (up to 5% (at.)) has been revealed, which could be introduced in SiO2 in the process of its preparation. In such a case, it was found that fluorine interacts with «green» silica by means of two mechanisms, leading to appearance of two phases within fluorinated powders of «green» SiO2.


2011 ◽  
Vol 23 (02) ◽  
pp. 135-140
Author(s):  
Mei-Ju Hou ◽  
Chi-Jen Shih

The main objective of this study is to characterize the in vitro osteo inductive behavior of pearl nano crystallites. The results obtained from X-ray diffraction, Fourier transform infrared (FTIR) spectra, and inductively coupled plasma mass (ICP-MS) analysis demonstrate that the pearls can induce the formation of a hydroxyl apatite (HA) layer on their surface in simulated body fluid (SBF), even after only short soaking periods. Further, MC3T3-E1 cells can easily attach and spread on the pearl powders after 1 h of cultivation.


Catalysts ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 316 ◽  
Author(s):  
Agata Markowska-Szczupak ◽  
Paulina Rokicka ◽  
Kunlei Wang ◽  
Maya Endo ◽  
Antoni Morawski ◽  
...  

Modified titania photocatalysts were synthesized by the pressure method using titanium(IV) oxide from Grupa Azoty Zakłady Chemiczne “Police” S.A., Police, Poland, and d-glucose solution. Characterization of obtained composites was performed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), elemental analysis, and measurements of zeta potential and specific surface area (SSA). The possibility of using glucose-titania composites as photocatalysts for simulated solar-assisted disinfection against gram-negative Escherichia coli and gram-positive Stapchyloccocus epidermidis bacteria were examined in two reaction systems, i.e., for suspended and immobilized photocatalysts (on the concrete). It was found that an increase in the d-glucose concentration, i.e., higher carbon content, led to a decrease in antibacterial properties. The sample obtained from 1% of d-glucose solution at 100 °C (TiO2-1%-G-100) showed superior photocatalytic activity under UV-Vis irradiation toward both bacteria species. Water disinfection was more efficient for suspended photocatalyst than that for supported one, where complete disinfection was reached during 55–70 min and 120 min of irradiation, respectively. For the first time, it has been shown that titania modified with monosaccharides can be efficiently used for water disinfection, and the immobilization of photocatalyst on the concrete might be a prospective method for public water supplies.


2018 ◽  
Vol 96 (8) ◽  
pp. 803-809
Author(s):  
Khaled Boughzala ◽  
Ali Bechrifa ◽  
Fethi Kooli ◽  
Nabil Fattah ◽  
Khaled Bouzouita

Barium–lanthanum britholite solid solutions, Ba10-xLax(PO4)6-x(SiO4)xF2, with 0 ≤ x ≤ 6 were prepared by solid state reaction in the temperature range of 1200–1400 °C. The powders were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES), F-selective electrode, X-ray diffraction (XRD), and Fourier transform infrared (FTIR). In addition, the present study used thermal analysis to follow the apatite formation reaction during the heat treatment. For x ≤ 3, there is formation of a single apatite phase, whereas above this value, the La2SiO5, La2Si2O7, BaSi2O5, and Ba2La2O5 secondary phases were observed. The variation of the lattice parameters of the apatite phase as a function of x confirmed that the solid solution is discontinuous to either side of x = 3.


2013 ◽  
Vol 680 ◽  
pp. 49-53
Author(s):  
Chang Yu ◽  
Xu Zhang ◽  
Kan He ◽  
Yue Liu ◽  
Jie Shan Qiu

A novel biocompatible Fe2+-chitosan (CTS)/citric acid modified carbon nanotube (CA-CNTs) composite (Fe2+-CTS/CA-CNTs) has been successfully synthesized by covalent bonding and crosslinking chemistry, followed by the reduction. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis spectrum, X-ray diffraction (XRD), inductively coupled plasma (ICP), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM) techniques. The results show that the CTS has been successfully grafted to the CA-CNTs carrier and Fe2+ ions are absorbed on the CTS by coordination bond mode. It was found that the Fe2+-CTS/CA-CNTs composite shows good magnetic properties with a low ratio of remanence to saturation magnetization and is in a superparamagnetic state at room temperature. It is believed that the Fe2+-CTS/CA-CNTs composite will be potential for application in MRI.


Sign in / Sign up

Export Citation Format

Share Document