RELATIONSHIP BETWEEN CHAIN STRUCTURES AND VISCOSITY IN THE MAGNETO-RHEOLOGICAL SUSPENSIONS STABLE DISPERSING DIFFERENT CONCENTRATION OF IRON PARTICLES WITH SMECTITE

2002 ◽  
Vol 16 (17n18) ◽  
pp. 2364-2370 ◽  
Author(s):  
A. SHIBAYAMA ◽  
T. MIYAZAKI ◽  
T. OTOMO ◽  
T. FUJITA ◽  
K. SHIMADA

Different concentration of spherical iron particles (7 to 8 μm) are dispersed in silicone oil to increase the stability with smectite. The concentration of iron particles is maintained between 2 and 40 volume %. The solenoid coil surrounding the cylinders applies the magnetic field in the longitudinal direction of cylinder, when the cylindrical viscometer is employed. As the magnetic field increases, the diameter of chain structure also increases. The shear stress versus shear rate is proportional relation since the viscosity enlarges as the magnetic field increases at small concentration of iron in MR fluid. Additionally, the more increase of the magnetic field strength caused the decrease of the shear stresses at large concentration of iron in MR fluid, while the share rate is increased for the open system of the cylinders. It is assumed that wider clusters or wider chain structures are partly produced in the cylinder under the certain magnetic field. Therefore, the shear stress is not uniformly increased. On the other hand, when the cone and plate viscometer is used, the magnetic field direction is perpendicular to the flow direction. The shear stress versus share rate behaves like a Bingham fluid type under the effect of the magnetic field. As increasing the iron particles volume %, the chain structures cannot increase and make other ring type structures. When the magnetic field is measured by hall probe, the magnetic field decreased at some amount of volume percentage of iron suspension because of shield effect.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Song Chen ◽  
Jin Huang ◽  
Kailin Jian ◽  
Jun Ding

Magnetorheological (MR) fluid shows different performances under different temperature, which causes so many problems like the reduction of rheological properties of MR fluid under a high temperature condition, the uncontrollability of shear stress, and even failure of transmission; on that basis, the influence of temperature on the performance of MR fluid and the cause of the rise in temperature of MR transmission device are analyzed in this paper; the shearing transmission performance of the MR transmission device under the effect of an external magnetic field and the influence of temperature on the shearing stress and transmission performance are analyzed. The study results indicate that temperature highly influences the viscosity of MR fluid, and the viscosity influences the shear stress of the MR fluid. The viscosity of MR fluid gradually declines when temperature rises from 100°C. Once the temperature exceeds 100°C, the viscosity would increase and the temperature stability would decline. Temperature obviously influences the characteristics of MR transmission, and particularly, highly influences the characteristics of MR transmission once being higher than 100°C. The chaining of the material in the magnetic field is influenced, which causes the reduction of the rheological properties, the uncontrollability of the shear stress, and even the failure of transmission.


2017 ◽  
Vol 69 (5) ◽  
pp. 655-665 ◽  
Author(s):  
Lijesh K.P. ◽  
Deepak Kumar ◽  
Harish Hirani

Purpose The purpose of this paper is to report on the development of magnetorheological (MR) fluids, having high on-state shear stress/viscosity, low off-state shear stress/viscosity, good redispersibility and stable suspension of carbonyl iron particles, using tetramethyl ammonium hydroxide (TAH) and oleic acid. Design/methodology/approach MR fluids for use in brakes are synthesized using different weight percentages of silicone oil, TAH, oleic acid and iron particles. The effects of TAH and oleic acid are studied. Shear stress is measured as a function of magnetic field on a magneto-rheometer. The images of MR particles settling with time are presented. The test set-up used to evaluate the performance of the MR fluids synthesized for brake application is detailed. Finally, a significant improvement in the MR performance of brakes is reported. Findings The MR fluid having 0.25 Wt.% oleic acid showed low off-state viscosity/shear stress and high on-state viscosity/shear stress. A higher weight percentage of TAH in the MR fluid further reduced the low off-shear stress and increased the high on-state shear stress with better stability. Originality/value Improvement of MR brake performance by adding surfactants like TAH and oleic acid has been the subject matter of several studies in the past, but these studies used a fixed percentage of surfactants in MR fluids. In the present work, the optimum percentage of TAH and oleic acid for an improved braking performance is determined by varying their content in the MR fluid, which has not been reported in any other work thus far.


2005 ◽  
Vol 475-479 ◽  
pp. 1999-2004 ◽  
Author(s):  
Tomoyuki Kakeshita ◽  
Takashi Fukuda ◽  
Tatsuaki Sakamoto

We have investigated the magnetic field-induced strain (MFIS) of the martensite and the parent phases in an Fe-31.2Pd(at.%) single crystal, which exhibits a martensitic transformation at TM = 230K. Below TM, a large MFIS of several percent appears due to rearrangement of martensite variants and this strain remains when a magnetic field is removed. Such rearrangement depends on magnetic field direction; Variants are perfectly rearranged into the variant, which lowers the magnetocrystalline anisotropy energy most, when a magnetic field is applied along [001]P, and partially when [011]P and hardly when [111]P (“P” represents “parent” phase). The dependence on the field direction can be explained by comparing the magnetic shear stress tmag with the shear stress t req required for rearrangement of variants. Above the temperature, TM, a relatively large MFIS appears and it increases up to about 10-3 with decreasing temperature from 280 K toward TM. This MFIS is probably caused by anomalies of some physical properties, such as elastic constant and dipole-dipole interaction coefficient in the parent phase.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongyun Wang ◽  
Cheng Bi ◽  
Yongju Zhang ◽  
Li Zhang ◽  
Fenfen Zhou

AbstractCompressions of magnetorheological (MR) fluids have been carried out under instantaneous magnetic fields. The yield strength of the MR fluid in compressive mode has been derived by assuming that it was a transformed shear flow in Bi-visous model. The compressive stresses have experimentally studied under different magnetic fields, different initial gap distances and different compressive velocities. The nominal yield shear stresses of the compressed MR fluid under different influential factors have been calculated. The compressive stress increased in a power law as the applied magnetic field increased, while it decreased as the initial gap distance and the compressive velocity increased. With the increase of magnetic field, the difference between the nominal yield shear stress curves increased, and the exponents of the power law increased with the increase of the magnetic field strengths. A larger initial gap distance and a lower compressive velocity resulted in a higher nominal yield shear stress under the same instantaneous magnetic field. The achieved results of the nominal yield shear stress with magnetic field seemed to deviate from the prediction of dipole model, and the chain structure aggregation effect, the sealing effect and the friction effect by compression should be considered.


Author(s):  
Александр Николаевич Болотов ◽  
Ольга Олеговна Новикова

Анализ литературных источников показывает, что существующие вискозиметры не всегда и не полностью могут обеспечить комплексные исследования магнитных наножидкостей для научных и практических целей. Разработана конструкция магнитного ротационного вискозиметра, на котором исследования могут проводиться в широком диапазоне значений индукции магнитного поля. Магнитное поле в приборе направлено ортогонально напряжению сдвига и может изменяться от нуля до 1,7·10 А/м. Прибор имеет два измерительных зазора заполненных жидкостью, что повышает точность результатов исследований маловязких жидкостей. Вискозиметр позволяет измерять стандартные характеристики магнитных наножидкостей (коэффициент вязкости, пластическая вязкость, предельное напряжение сдвига и др.), а также изучать структурные особенности жидкостей при сдвиговых напряжениях. Скорость сдвига в жидкости может стабильно поддерживаться в широком диапазоне (1 ÷5)·10 с. Вязкость исследуемых жидкостей может изменяться от 10 Па·с до ≈ 10 Па·с. Для исследований на вискозиметре требуется небольшое количество магнитной наножидкости объемом около 3,5 см. Математическое описание процесса ламинарного течения жидкости в кольцевом зазоре вискозиметра позволило оптимизировать его геометрические размеры и получить формулы для расчета коэффициента вязкости, напряжения сдвига и скорости сдвига, используя экспериментальные данные. Analysis of the literature sources shows that the existing viscometers are not always and not completely able to provide comprehensive studies of magnetic nanofluids for scientific and practical purposes. Design has been developed of a magnetic rotary viscometer which makes it possible to carry out investigations in a wide range of the magnetic field induction. The magnetic field in the device is directed orthogonally to the shear stress and can vary from zero to 1,7·10 A/m. The device has two measuring gaps filled with liquid, that increases the accuracy of the results of studies of low-viscosity liquids. The viscometer allows you to measure the standard characteristics of magnetic nanofluids (viscosity coefficient, plastic viscosity, ultimate shear stress, etc.), as well as to study the structural features of liquids under shear stresses. The shear rate in the liquid can be stably maintained in a wide range of (1÷5)·10 c. The viscosity of the studied liquids can vary from 10 Pa·s to ≈10 Pa·s. For studies on a viscometer, a small amount of magnetic nanofluid with a volume of about 3,5 cm is required. Using experimental data, the mathematical description of the process of laminar fluid flow in the annular gap of the viscometer made it possible to optimize its geometric dimensions and obtain formulas for calculating the viscosity coefficient, shear stress and shear rate.


1998 ◽  
Vol 5 (3) ◽  
pp. 937-939 ◽  
Author(s):  
Nobuhiko Sakai ◽  
Hiroshi Ohkubo ◽  
Yasushi Nakamura

A 3 T superconducting magnet has been designed and constructed for magnetic Compton-profile (MCP) measurements with the new capabilities that the magnetic field direction can be altered quickly (within 5 s) and liquid-He refill is not required for more than one week. For the latter capability, two refrigerators have been directly attached to the cryostat to maintain the low temperature of the radiation shields and for the recondensation of liquid He. The system has been satisfactorily operated for over one week.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evgeny D. Filippov ◽  
Sergey S. Makarov ◽  
Konstantin F. Burdonov ◽  
Weipeng Yao ◽  
Guilhem Revet ◽  
...  

AbstractWe analyze, using experiments and 3D MHD numerical simulations, the dynamic and radiative properties of a plasma ablated by a laser (1 ns, 10$$^{12}$$ 12 –10$$^{13}$$ 13 W/cm$$^2$$ 2 ) from a solid target as it expands into a homogeneous, strong magnetic field (up to 30 T) that is transverse to its main expansion axis. We find that as early as 2 ns after the start of the expansion, the plasma becomes constrained by the magnetic field. As the magnetic field strength is increased, more plasma is confined close to the target and is heated by magnetic compression. We also observe that after $$\sim 8$$ ∼ 8  ns, the plasma is being overall shaped in a slab, with the plasma being compressed perpendicularly to the magnetic field, and being extended along the magnetic field direction. This dense slab rapidly expands into vacuum; however, it contains only $$\sim 2\%$$ ∼ 2 % of the total plasma. As a result of the higher density and increased heating of the plasma confined against the laser-irradiated solid target, there is a net enhancement of the total X-ray emissivity induced by the magnetization.


2021 ◽  
Vol 11 (10) ◽  
pp. 4470
Author(s):  
Inna A. Belyaeva ◽  
Jürgen Klepp ◽  
Hartmut Lemmel ◽  
Mikhail Shamonin

Ultra-small-angle neutron scattering (USANS) experiments are reported on isotropic magnetoactive elastomer (MAE) samples with different concentrations of micrometer-sized iron particles in the presence of an in-plane magnetic field up to 350 mT. The effect of the magnetic field on the scattering curves is observed in the scattering vector range between 2.5 × 10−5 and 1.85 × 10−4 Å−1. It is found that the neutron scattering depends on the magnetization history (hysteresis). The relation of the observed changes to the magnetic-field-induced restructuring of the filler particles is discussed. The perspectives of employing USANS for investigations of the internal microstructure and its changes in magnetic field are considered.


2018 ◽  
Vol 475 (3) ◽  
pp. 3324-3330 ◽  
Author(s):  
Diego F González-Casanova ◽  
A Lazarian ◽  
J Cho

Sign in / Sign up

Export Citation Format

Share Document