A NEW DEVICE FOR THE FULL RHEOLOGICAL CHARACTERIZATION OF MAGNETO-RHEOLOGICAL FLUIDS

2005 ◽  
Vol 19 (07n09) ◽  
pp. 1353-1359 ◽  
Author(s):  
JOERG LAEUGER ◽  
KLAUS WOLLNY ◽  
HEIKO STETTIN ◽  
SIEGFRIED HUCK

A new magneto-rheology device (MRD) was constructed, which can be used in combination with a Physica MCR roational rheometer form Anton Paar. The MRD is build around a parallel-plate measuring geometry. Maximum magnetic flux densities of up to 1 Tesla in the air gap between the two plates are possible. The distribution of the magnetic flux density in the measuring gap has been evaluated with the help of a three-dimensional Hall sensor. The MRD system allows simultaneous software controlled setting of the magnetic field strength and the use of all possible rheological test modes of the rheometer. In the past mostly flow curves based on purely rotational measurements have been used to investigate the rheological behavior of MRFs giving only limited information. A measuring method is introduced, which is based on oscillatory measurements and thus allowing an exact determination of a substance's visco-elastic properties as a function of the magnetic field strength. In addition to structure investigations at various magnetic field strength with standard oscillatory strains sweeps an oscillation measurement with constant amplitude and constant frequency was performed while changing the magnetic field strength in a logarithmic ramp (magneto-sweep). On a typical MRF significant transition points are observed which distinguish different regions. These transitions can directly be correlated to corresponding changes in the material's structure resulting from the increase in the magnetic flux density.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


Author(s):  
Ping-Hsun Lee ◽  
Jen-Yuan (James) Chang

Abstract In this paper we proposed a platform for measuring shear force of magnetorheological (MR) fluid by which the relationship of yield stress and magnetic flux density of specific material can be determined. The device consisted of a rotatable center tube in a frame body and the magnetic field was provided by two blocks of permanent magnets placed oppositely outside the frame body. The magnitude and direction of the magnetic field were manipulated by changing the distance of the two permanent magnets from the frame body and rotating the center tube, respectively. For determining the magnetic field of the device, we adopted an effective method by fitting the FEM (finite element method) result to the measured one and then rebuilt the absent components to approximate the magnetic field, which was hardly to be measured simultaneously as different device setup were required. With the proposed platform and analytical methods, the drawing shear force and the corresponding yield stress contributed by MR fluid could be evaluated in respect to the magnitude and direction of given magnetic flux density with acceptable accuracy for specific designing purposes without a large, complex, and expensive instrument.


Author(s):  
Gui-Ping Zhu ◽  
Nam-Trung Nguyen

This paper reports the numerical and experimental investigation on magnetic particle concentration in a uniform magnetic field. The flow system consists of water-based ferrofluid and glycerol/DI water mixture streams. Two regimes were observed with spreading and mixing phenomena. With a low magnetic field strength, the spread of magnetic particles is caused by improved diffusion migration. With a relatively high field strength, instability at the interface would occur due to the mismatch in magnetization of the fluid streams. The transport of magnetic particles is induced by chaotic mixing of the fluids caused by a secondary flow. The mixing phenomena are characterized by magnetic flux density. For configuration with flow rate and viscosity ratio (between diamagnetic and magnetic streams) being set at 1 and 0.5, the mixing efficiency analyzed based on magnetic particles concentration increases approximately by 0.3 at around 3.5 mT. This value of magnetic flux density indicates the requirement on instability inception. The mixing efficiency increases with magnetic flux density increases further. Complete mixing can be achieved with a magnetic flux density at around 10 mT. The magnetic approach offers a wireless, heat-free and pH-independent solution for a lab-on-a-chip system.


Author(s):  
Alireza Hekmati ◽  
Siamak Arzanpour

This paper presents a mathematical modeling of a modified voice coil generator, which consists of a moving coil within a fixed magnetic circuit. The simulation has been done with Comsol Multiphysics software, which is a powerful tool to demonstrate the pattern of magnetic field and calculate the induced current in the coil. In our simulations, the magnetic circuit consists of the magnetic conductor and the air gap. In this analysis, the magnetic flux density and the magnetic field intensity are calculated. Moreover, through calculation of the total reluctance of the magnetic circuit and employing the ohm’s law for magnetic circuits, the effect of the length and cross section of the total circuit on the magnetic flux are investigated. Finally, a pattern for the magnetic flux density are demonstrated and the simulation result indicates that the magnetic field is well concentrated on the coil area, therefore this prototype can capture and convert most of the kinetic energy to electricity. A prototype has been fabricated and tested on the shaker. The experimental results indicate that this setup is able to produce the maximum voltage of 0.326 V and the peak power equal to 2.605 mW in 35 Hz frequency and 1 mm peak to peak amplitude.


2019 ◽  
Vol 32 (4) ◽  
pp. 555-569
Author(s):  
Slavko Vujevic ◽  
Tonci Modric

There has been apprehension about the possible adverse health effects resulting from exposure to power frequency magnetic field, especially in the overhead power lines vicinity. Research work on the biological effects of magnetic field has been substantial in recent decades. Various international regulations and safety guidelines, aimed at the protection of human beings, have been issued. Numerous measurements are performed and different numerical algorithms for computation of the magnetic field, based on the Biot- Savart law, are developed. In this paper, a previously developed 3D quasistatic numerical algorithm for computation of the magnetic field (i.e. magnetic flux density) produced by overhead power lines has been improved in such a way that cylindrical segments of passive conductors are also taken into account. These segments of passive conductors form the conductive passive contours, which can be natural or equivalent, and they substitute conductive passive parts of the overhead power lines and towers. Although, their influence on the magnetic flux density distribution and on the total effective values of magnetic flux density is small, it is quantified in a numerical example, based on a theoretical background that was developed and presented in this paper.


2006 ◽  
Vol 126 (3) ◽  
pp. 127-134 ◽  
Author(s):  
Shinya Urata ◽  
Takashi Todaka ◽  
Masato Enokizono ◽  
Hiroyasu Shimoji

2019 ◽  
Vol 632 ◽  
pp. A13 ◽  
Author(s):  
Y. Stein ◽  
R.-J. Dettmar ◽  
M. Weżgowiec ◽  
J. Irwin ◽  
R. Beck ◽  
...  

Context. The radio continuum halos of edge-on spiral galaxies have diverse morphologies, with different magnetic field properties and cosmic ray (CR) transport processes into the halo. Aims. Using the Continuum HAloes in Nearby Galaxies – an EVLA Survey (CHANG-ES) radio continuum data from the Karl G. Jansky Very Large Array (VLA) in two frequency bands, 6 GHz (C-band) and 1.5 GHz (L-band), we analyzed the radio properties, including polarization and the transport processes of the CR electrons (CREs), in the edge-on spiral galaxy NGC 4013. Supplementary LOw-Frequency ARray (LOFAR) data at 150 MHz are used to study the low-frequency properties of this galaxy and X-ray data are used to investigate the central region. Methods. We determined the total radio flux densities (central source, disk, halo and total) as well as the radio scale heights of the radio continuum emission at both CHANG-ES frequencies and at the LOFAR frequency. We derived the magnetic field orientation from CHANG-ES polarization data and rotation measure synthesis (RM synthesis). Furthermore, we used the revised equipartition formula to calculate the magnetic field strength. Lastly, we modeled the processes of CR transport into the halo with the 1D SPINNAKER model. Results. The central point source dominates the radio continuum emission with a mean of ∼35% of the total flux density emerging from the central source in both CHANG-ES bands. Complementary X-ray data from Chandra show one dominant point source in the central part. The XMM-Newton spectrum shows hard X-rays, but no clear AGN classification is possible at this time. The radio continuum halo of NGC 4013 in C-band is rather small, while the low-frequency LOFAR data reveal a large halo. The scale height analysis shows that Gaussian fits, with halo scale heights of 1.2 kpc in C-band, 2.0 kpc in L-band, and 3.1 kpc at 150 MHz, better represent the intensity profiles than do exponential fits. The frequency dependence gives clear preference to diffusive CRE transport. The radio halo of NGC 4013 is relatively faint and contributes only 40% and 56% of the total flux density in C-band and L-band, respectively. This is less than in galaxies with wind-driven halos. While the SPINNAKER models of the radio profiles show that advection with a launching velocity of ∼20 km s−1 (increasing to ∼50 km s−1 at 4 kpc height) fits the data equally well or slightly better, diffusion is the dominating transport process up to heights of 1–2 kpc. The polarization data reveal plane-parallel, regular magnetic fields within the entire disk and vertical halo components indicating the presence of an axisymmetric field having a radial component pointing outwards. The mean magnetic field strength of the disk of NGC 4013 of 6.6 μG is rather small. Large-scale vertical fields are observed in the halo out to heights of about 6 kpc. Conclusions. The interaction and the low star formation rate (SFR) across the disk of NGC 4013 probably influence the appearance of its radio continuum halo and are correlated with the low total magnetic field strength. Several observable quantities give consistent evidence that the CR transport in the halo of NGC 4013 is diffusive: the frequency dependence of the synchrotron scale height, the disk/halo flux density ratio, the vertical profile of the synchrotron spectral index, the small propagation speed measured modeled with SPINNAKER, and the low temperature of the X-ray emitting hot gas.


Author(s):  
Ahmed El-Shahat ◽  
Ashraf. M ◽  
Waleed. A ◽  
K. Sayed

Introduction: Early recognition of stroke with its two types Ischemic and Hemorrhagic, is one of the most crucial research points, commonly used methods are CT- (computerized tomography), and MRI- (Magnetic resonance imaging). These techniques cause a delay in the detection of the condition, which causes permanent disability. The main reason behind the fatal consequences of stroke is the delay of detection. Therefore, this research paper aims to early detection of the type of stroke without delay until the appropriate diagnosis of each type is made, and then the appropriate treatment without delay. Method: Using a non-invasive and fast technique to determine the stroke type by wave, we simulate and design a vessel containing a liquid as a laminar flow with the same density and velocity of blood, and it was surrounded by a Homogenized multi-turn coil consisting of (n) turns to represent the magnetic field, using specific frequency (HZ) with Electrical field in coil current (A) to see the changing in magnetic flux density (MFD), Depending on the changes in MFD, the flow of blood in laminar flow can be affected by clotting (Ischemic) or Hemorrhagic (cutting) in our vessel designed. We have built three different scenarios to apply the technique which are: First: Normal Scenario (where the blood in vessel has no problem), second: clotting (ischemic, where the vessel blocked in specific three position) and Third: Cutting (Hemorrhagic, where the vessel cut in certain nine positions). Results: This paper presents-through our own design-the studying of applying the electromagnetic waves on blood inside the vessel to detect the stroke type in our three scenarios (normal, ischemic three positions or hemorrhagic nine positions), Studying the magnetic field and laminar flow. This study covered in three areas. First: coil geometry analysis, Second: stationary, and Third: frequency domain. through the changes in Magnetic Flux Density -MFD- waves. The results were promising and distinct for distinguishing between the three scenarios which are normal, ischemic (3 positions) and hemorrhagic (9 positions) the results of MFD are: 0.09 to 3.3*10^-3, 0.08 to 3.15*10^-4, 0.15 to 6.2*10^-3 respectively.


Sign in / Sign up

Export Citation Format

Share Document