THERMAL STABILITY OF THE NEW SOLITON TRANSPORTED BIO-ENERGY UNDER INFLUENCE OF FLUCTUATIONS OF CHARACTERISTIC PARAMETERS AT BIOLOGICAL TEMPERATURE IN THE PROTEIN MOLECULES

2005 ◽  
Vol 19 (32) ◽  
pp. 4677-4699 ◽  
Author(s):  
XIAO-FENG PANG ◽  
HUAI-WU ZHANG ◽  
JIA-FENG YU ◽  
YU-HUI LUO

The dynamic behaviors of the new soliton in the improved Davydov model in the protein molecules at biological temperature have been numerically simulated by utilizing the dynamic equations for the bio-energy transport and the Runge–Kutta way. In this simulation the influences of the temperature and structure disorders of the protein molecules on the soliton transporting the bio-energy have been completely considered. We find that the new soliton is quite stable in the cases of motion of a long time of 300 ps and of disorders of the structures of the proteins at biological temperatures of 300 K–320 K. The disorders of the structures contain the disorder of mass sequence of amino acids and the fluctuations of the coupling constant, force constant and dipole- dipole interaction constant and ground state energy of the proteins, designating the features of its structure and interactions between the particles in it. However, the soliton disperses in the cases of higher temperature of 325 K and larger structure disorders. The numerical results show that the new soliton is very robust against the influences of the thermal perturbation and structure disorders at biological temperature 300 K, its lifetime and critical temperature are at least 300 ps at 300 K and 320 K, respectively. These results are also consistent with analytical data.

2007 ◽  
Vol 21 (01) ◽  
pp. 13-42 ◽  
Author(s):  
XIAO-FENG PANG ◽  
JIA-FENG YU ◽  
YU-HUI LAO

Combination effects of structure disorder of protein molecules containing the fluctuations of spring constant, dipole-dipole interaction constant and exciton-phonon coupling constant and diagonal disorder, resulting from nonuniform distribution of masses of amino acid residues and impurities, on the soliton transported the bio-energy in the proteins have been numerically simulated by fourth-order Runge–Kutta method in the improved model. The results obtained show that these structure disorders can change the states of solitons but as the solitons are quite robust against these disorder effects, they can only be dispersed or disrupted in the cases of quite large structure disorders. From these results and the properties of molecular structure of biological proteins we can conclude that the new soliton in the improved model is quite stable in normal conditions. Thus the soliton is possibly a carrier of bio-energy transport in the protein molecules.


2009 ◽  
Vol 23 (10) ◽  
pp. 2303-2322 ◽  
Author(s):  
XIAO-FENG PANG ◽  
MEI-JIE LIU

The dynamic features of soliton transporting the bio-energy in the α-helix protein molecules with three channels under influences of temperature of systems and chain–chain interaction among these channels have been numerically studied by using the dynamic equations in a new model and the fourth-order Runge–Kutta method. This result obtained shows that the chain–chain interaction depresses the stability of the soliton due to the dispersed effect, but the stability of the soliton in the case of simultaneous motivation of three channels by an initial conditions is better than that in another initial condition. We also find from this investigation that the new soliton can transport steadily over 1000 amino acid residues in the cases of motion of long time of 120 ps, and retain their shapes and energies to travel towards the protein molecules after mutual collision of the solitons at the biological temperatures of 300 K. Therefore the soliton is very robust against the thermal perturbation of the α-helix protein molecules at 300 K. From the investigation of changes of features of the soliton with increasing temperature, we find that the amplitudes and velocities of the solitons decrease with increasing temperature of proteins, but the soliton disperses in the cases of higher temperature of 325 K and larger structure disorders. Thus we find that the critical temperature of the soliton occurring in the α-helix protein molecules is about 320 K. Therefore we can conclude that the soliton in the new model can play an important role in the bio-energy transport in the α-helix protein molecules with three channels at biological temperature, and the new model is possibly a candidate for the mechanism of this transport.


2009 ◽  
Vol 23 (01) ◽  
pp. 71-88 ◽  
Author(s):  
XIAO-FENG PANG ◽  
MEI-JIE LIU

We studied numerically the influences of damping and temperature of medium on the properties of the soliton transported bio-energy in the α-helix protein molecules with three channels by using the dynamic equations in the improved Davydov theory and fourth-order Runge–Kutta method. From the simulation experiments, we see that the new solitons can move along the molecular chains without dispersion at a constant speed, in which the shape and energy of the soliton can remain in the cases of motion, whether short-time at T=0 or long time at T=300 K. In these motions, the soliton can travel over about 700 amino acid residues, thus its lifetime is, at least, 120 ps at 300 K. When the two solitons undergo a collision, they can also retain themselves forms to transport towards. These results are consistent with the analytic result obtained by quantum perturbed theory in this model. However, the amplitudes of the solitons depress along with increase of temperature of the medium, and it begins to disperse at 320 K. In the meanwhile, the damping of the medium can influence the states and properties of the soliton excited in α-helix protein molecules. The investigation indicates that the amplitude and propagated velocity of the soliton decrease, when the damping of medium increases. The soliton is dispersed at the large damping coefficient Γ=4 Γ0 at 300 K. The results show that the soliton excited in the α-helix protein molecules with three channels is very robust against the damping and thermal perturbation of medium at biological temperature of 300 K. Thus we can conclude that the soliton can play important part in the bio-energy transport and the improved model is possibly a candidate for the mechanism of the energy transport in the α-helix proteins.


2014 ◽  
Vol 09 (01) ◽  
pp. 1-79 ◽  
Author(s):  
X.-F. PANG

The phosphorylation and de-phosphorylation reactions in the cell, through which the bio-energy is released from ATP hydrolysis in biological systems, are described in this paper. Firstly, the bio-energy is accepted by the vibrational amides in protein molecules in virtue of resonant mechanism of frequency or energy, and can transport along the protein molecules in soliton, which is formed by self-trapping of vibrational quantum (or exciton), by means of dipole–dipole interaction among the neighboring peptide groups (or amino acids). Theory and properties of bio-energy transport were proposed and described by many researchers. We here reviewed mainly the theories and features of Davydov's and Pang's models. However these theoretical models including Davydov's and Pang's model were all established based on a periodic and uniform proteins, which are different from practically biological proteins molecules. Therefore, it is necessary to inspect and verify the validity of the theory of bio-energy transport in real biological protein molecules. These problems were extensively studied by a lot of researchers using different methods in past thirty years, a considerable number of research results were obtained. I review here the situation and progresses of study on this problem, in which we reviewed the correctness of the theory of bio-energy transport including Davydov's and Pang's model and its investigated progresses under influences of structural non-uniformity and disorder, side groups and imported impurities of protein chains as well as the thermal perturbation and damping of medium arising from the biological temperature of the systems. The structural non-uniformity arises from the disorder distribution of sequence of masses of amino acid residues, side groups and imported impurities, which results in the changes and fluctuations of the spring constant, dipole–dipole interaction, exciton–phonon coupling constant, diagonal disorder or ground state energy and chain–chain interaction of the molecular channels in the dynamic equations in different models. The influences of structural non-uniformity, side groups and imported impurities as well as the thermal perturbation and damping of medium on the bio-energy transport in the proteins with single chain and three chains were studied by different numerical simulation techniques and methods including the average Hamiltonian way of thermal perturbation, fourth-order Runge–Kutta method, Monte Carlo method, quantum perturbed way and thermodynamic and statistical method, and so on. In this review, the numerical simulation results of bio-energy transport in uniform protein molecules, the influence of structural non-uniformity on the bio-energy transport, the effects of system temperature on the bio-energy transport and the simultaneous effects of structural non-uniformity, damping and thermal perturbation of proteins on the bio-energy transport in single chains and α-helical molecules were included and studied, respectively. The results obtained from these studies and reviews suggest that Davydov's soliton is unstable, but Pang's soliton is stable at physiologic temperature 300 K under influences of structural non-uniformity and disorder, side groups, imported impurities and damping of medium. Thus we can conclude that the soliton in Pang's model is exactly a carrier of the bio-energy transport and Pang's theory is appropriate to α-helical protein molecules. Finally we provided a few of experimental evidences for real existence of the soliton and validity of the theory of bio-energy transport in proteins and stated further the applications of the theory in living systems.


In a previous paper, the investigation of the scattering of light in agar sols and gels was described and a view regarding the changes taking place in the system during gelation was developed. In a series of paper, of which this is the first, the author proposes to publish investigations of the scattering of light in protein solutions. The various physical properties of the different proteins have been studied for a long time past. Several workers have tried to evaluate the molecular weights of the proteins from the osmotic pressure of their solutions and also from analytical data. Recently a very precise and definite method for the determination of the molecular weights of the proteins, based upon the sedimentation of these heavy molecules in the ultra-centrifuge, has been successfully developed by Svedberg. The molecular weight can be determined in two ways:—(I) by the measurement of the sedimentation equilibrium reached in the cell as a result of the centrifugal and diffusion forces; (II) by measuring the sedimentation velocity of the protein molecules in high centrifugal fields.


2012 ◽  
Vol 727-728 ◽  
pp. 1552-1556
Author(s):  
Renata Barbosa ◽  
Dayanne Diniz Souza ◽  
Edcleide Maria Araújo ◽  
Tomás Jefférson Alves de Mélo

Studies of degradation have verified that the decomposition of some quaternary ammonium salts can begin to be significant at the temperature of about 180 ° C and like most thermoplastics are processed at least around this temperature, the thermal stability of the salt in clay should always be considered. Some salts are more stable than others, being necessary to study the degradation mechanisms of each case. In this work, four quaternary ammonium salts were characterized by differential scanning calorimetry (DSC) and thermogravimetry (TG). The results of DSC and TG showed that the salts based chloride (Cl-) anion begin to degrade at similar temperatures, while the salt based bromide (Br-) anion degrades at higher temperature. Subsequently, a quaternary ammonium salt was chosen to be used in organoclays, depending on its chemical structure and its thermal behavior.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Salma Gul ◽  
Anwar-ul-Haq Ali Shah ◽  
Salma Bilal

A comprehensive study of thermally treated polyaniline in its emeraldine salt form is presented here. It offers an understanding of the thermal stability of the polymer. Emeraldine salt was prepared by a novel emulsion polymerization pathway using dodecylbenzene sulfonic acid and sulfuric acid together as dopants. The effect of temperature and heating rate on the degradation of this emeraldine salt was studied via thermogravimetric analysis. The thermally analyzed sample was collected at various temperatures, that is, 250, 490, 500, and 1000°C. The gradual changes in the structure of the emeraldine salt were followed through cyclic voltammetry, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy. Results demonstrate that emeraldine salt shows high thermal stability up to 500°C. This is much higher working temperature for the use of emeraldine salt in higher temperature applications. Further heat treatment seems to induce deprotonation in emeraldine salt. Cyclic voltammetry and ultraviolet-visible spectroscopy revealed that complete deprotonation takes place at 1000°C where it loses its electrical conductivity. It is interesting to note that after the elimination of the dopants, the basic backbone of emeraldine salt was not destroyed. The results reveal that the dopants employed have a stability effect on the skeleton of emeraldine salt.


2011 ◽  
Vol 383-390 ◽  
pp. 768-773
Author(s):  
Li Li Tang ◽  
Chun Bo Wang

We focus on the annealing-induced changes of N-centered nearest-neighbor (NN) entironment in Ga1-xlnxNyAs1-y quaternary alloys and present a statistical distributing model of the binary bonds under thermodynamics equilibrium state. The core of this model is the assumption that the phase separation result of equimolar system at T=0 K is “ + ”, in which the effect of strain has been ignored. We propose two mechanisms for annealing: (i) Atomic relaxation lead to a total energy minimum. (ii) The type conversion of bond configuration is the main reason for the remarkable blue shift. Then parameter r, the number of NN In atoms per N atom, is calculated. We find that the theoretical NN distributions strain is in good agreement with former studies. It can be concluded that the blue shift induced by long-time annealing at low temperature is able to be equal with that induced by short-time annealing at higher temperature. The results are close to recent investigations. But an allegorical linear relation between band gap and composition (x, y) is still in question.


2014 ◽  
Vol 682 ◽  
pp. 357-362 ◽  
Author(s):  
Yulia A. Amelkovich ◽  
Olga B. Nazarenko ◽  
Alexander I. Sechin ◽  
Kristina O. Fraynova

Thermal stability of aluminum, iron and copper nanopowders, produced by electrical explosion of wire during heating in the air, was investigated in the work. Thermal analysis method was used for control of thermal stability for nanodispersed metals in heating in the air. It was shown, that after a long time of storage in air electrical explosion metal nanopowders have had extra active ones. Estimation of velocity of flame spreading in poured layer of the powders was carried out. Quality changes in investigated samples, happened for storage time, lead to increase of flame front length and its line velocity. The results of the researches could be used for diagnostics of fire danger of nanodispersed metals, also for selection of working regimes and provision of fire explosion safety for technologies which produce and apply of nanodispersed metal powders. Time-factor have not effected on criteria concerning the danger of the loads and have not changed its marking.


Sign in / Sign up

Export Citation Format

Share Document