DEVELOPMENT OF PEROVSKITE INPrSUBSTITUTEDPb(Zr0.52Ti0.48)O3AND DIELECTRIC CHARACTERISTIC

2006 ◽  
Vol 20 (21) ◽  
pp. 3071-3080 ◽  
Author(s):  
N. UDOMKAN ◽  
P. LIMSUWAN ◽  
P. WINOTAI ◽  
T. TUNKASIRI

The purpose of this research is to investigate the structure of lead zirconate titanate ceramics ( Zr:Ti =52:48) when doped with Pr2O3and the corresponding properties such as micro-structural properties, physical properties, dielectric constant (εr), piezoelectric properties (kp, Qm, and d33), and the ferroelectric property. The materials were prepared via conventional mixed oxide method and sintered at 1200°C. The Rietveld refinement of X-ray diffraction patterns and combination of both patterns revealed the tetragonal structure for all samples to have space group of P4mm. For higher dopant content (10 mol%), the pyrochlore phase of Pr2O3also appeared in the respective samples. These pyrochlore phases caused the detriment of dielectric and piezoelectric properties. For those with lower dopant content (1.00 mol%), the Pr ion substituted at the A and B sites with isovalent dopant effects, i.e. a lower value of εr, and kp. The hysteresis loops indicated the ferroelectric property for all samples. The microstructure showed dense grain according to a high density and the additional phases of Pr2O3were clearly observed for 10 mol% doping. The Curie temperature decreased with increasing dopant content, as determined from high temperature X-ray diffraction and differential scanning calorimetry.

2005 ◽  
Vol 19 (10) ◽  
pp. 1757-1769 ◽  
Author(s):  
P. SRIMAUNGSONG ◽  
N. UDOMKAN ◽  
L. PDUNGSAP ◽  
P. WINOTAI

The purpose of this research is to investigate the structure of lead zirconate titanate ceramics (Zr:Ti = 52:48) doped with CeO2and corresponding properties such as micro-structural properties, physical properties, dielectric constant (εr), piezoelectric properties (kp, Qm, and d33), and the ferroelectric property. The specimens were prepared via a conventional mixed oxide method and sintered at 1200°C. Rietveld refinement of X-ray diffraction patterns resulted in the P4mm tetragonal structure for all samples. At a high dopant content (10 mol%), pyrochlore phases of CeO2appeared which caused the detriment of dielectric and piezoelectric properties. At a low dopant content (1 mol%), Ce4+ions entered the B site with isovalent dopant effects, and clearly resulted lower values of εr, and kpcompared with those of the undoped sample. The hysteresis loops showed ferroelectric properties for all samples. Microstructures displayed dense grain distribution and thus yielded a high density. The additional phase of CeO2was clearly observed for 10 mol% doping which implied it was overdoped. Finally, the Curie temperature has been found to decrease with increasing dopant content, as determined from high temperature X-ray diffraction and differential scanning calorimetry.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Shrabanee Sen ◽  
Sk. Md. Mursalin ◽  
M. Maharajan

Magnetoelectric composites of zinc ferrite and soft lead zirconate titanate (PZT) having formula 0.5 ZnFe2O4-0.5 PZT were synthesized by sol-gel technique. X-ray diffraction analysis was carried out to confirm the coexistence of individual phase. TEM micrographs were taken to confirm the formation of nanosized powders and SEM micrographs were taken to study the morphology of the sintered pellets. Dielectric and P-E hysteresis loops were recorded, respectively, to confirm the ferroelectric properties of the composites.


1990 ◽  
Vol 202 ◽  
Author(s):  
L. P. Cook ◽  
M. D. Vaudin ◽  
P. K. Schenck ◽  
W. Wong-Ng ◽  
C. K. Chiang ◽  
...  

ABSTRACTThin films of BaTiO3 and PZT (lead zirconate titanate, 47%PbTiO3, 53%PbZrO3) have been produced by laser irradiation of the appropriate ceramic targets and deposition of the ejected and vaporized material on planar substrates. The microstructural changes during thermal processing of these films have been studied by scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDX), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), x-ray diffraction (XRD), and by measurement of electrical properties. Films have been deposited using both Nd/YAG and excimer lasers and on unheated as well as heated substrates. Excimer films are considerably smoother than the Nd/YAG films, and the uniformity of the as-deposited microstructures is promoted by substrate heating. However, ferroelectric hysteresis loops were only observed for the considerably less smooth Nd/YAG PZT films; thermal treatment did little to improve the smoothness of these films. An excimer BaTiO3 film deposited on a heated substrate showed crystallographic alignment and had a dielectric constant of −100. Efforts are underway to combine the best features of films produced by both methods.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3338
Author(s):  
Thomas W. Cornelius ◽  
Cristian Mocuta ◽  
Stéphanie Escoubas ◽  
Luiz R. M. Lima ◽  
Eudes B. Araújo ◽  
...  

The piezoelectric properties of lanthanum-modified lead zirconate titanate Pb1−xLax(Zr0.52Ti0.48)1−x/4O3 thin films, with x = 0, 3 and 12 mol% La, were studied by in situ synchrotron X-ray diffraction under direct (DC) and alternating (AC) electric fields, with AC frequencies covering more than four orders of magnitude. The Bragg reflections for thin films with low lanthanum concentration exhibit a double-peak structure, indicating two contributions, whereas thin films with 12% La possess a well-defined Bragg peak with a single component. In addition, built-in electric fields are revealed for low La concentrations, while they are absent for thin films with 12% of La. For static and low frequency AC electric fields, all lanthanum-modified lead zirconate titanate thin films exhibit butterfly loops, whereas linear piezoelectric behavior is found for AC frequencies larger than 1 Hz.


2006 ◽  
Vol 21 (4) ◽  
pp. 856-863 ◽  
Author(s):  
S. Roy ◽  
S. Bysakh ◽  
J. Subrahmanyam

Ultrafine, PbZr0.53Ti0.47O3 powder was synthesized by homogeneous precipitation of metal ions in aqueous solution using urea. The results obtained from different characterization methods were compared with those obtained from the conventional precipitation method using ammonia in terms of crystallization, homogeneity, and microstructure. The as-dried precipitate converted to the single-phase crystalline lead zirconate titanate powder when calcined at 550 °C and above. The calcined powder showed smaller particle size, minimum agglomeration, and uniform shape. The growth of the particles was very little at higher temperatures. Powdered samples that precipitated using urea crystallized directly to rhombohedral lead zirconate titanate, without any intermediate pyrochlore phase formation. The NH3-precipitated powder converted to rhombohedral lead zirconate titanate via metastable pyrochlore and it showed phase segregation upon annealing at higher temperatures. The reaction kinetics has been studied by x-ray diffraction, differential thermal analysis, and differential scanning calorimetry.


2007 ◽  
Vol 280-283 ◽  
pp. 211-214 ◽  
Author(s):  
Hua Zhou ◽  
Qingchi Sun ◽  
Cuimin Lu

Praseodymium (Pr) modified lead zirconate titanate ceramics (Pb1-1.5xPrx (ZryTi1-y) O3 with x = 0.02, 0.04, 0.06, 0.08 and y = 0.51, 0.52, 0.54, 0.56, 0.58, 0.60) were prepared by the high temperature solid-state reaction method. X-ray diffraction (XRD) results show that the morphotropic phase boundary (MPB) of Pb0.955Pr0.03(ZryTi1-y)O3 (PPZT1) is located in the area where the molar fraction of Zr is near 55%, when the molar fraction of Zr is 54% and the sintering temperature is 1240°C with 1h curing time, the superior piezoelectric properties of compositions of PPZT1 system were optimized, a set of d33 = 420 pC/N; eT 33/e0 = 2,000; Tc = 314°C; Qm = 76; tand = 2% and kp = 0.53. On the other hand, Pb1-1.5xPrx(Zr0.54Ti0.46)O3 (PPZT2) is far from MPB and their compositions are all in tetragonal phase.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 3805-3810 ◽  
Author(s):  
NOBUYOSHI FUJIWARA ◽  
KAZUHIRO KUSUKAWA ◽  
KHAIRUNISAK ABDUL RAZAK ◽  
WEI GAO

Lead zirconate titanate (PZT) thin films of 5 μm thick were produced by a hydrothermal method on pure titanium substrates. ZrOCl 2-8 H 2 O , Pb ( NO 3)2 and TiO 2 were used as precursors and KOH as a promoter. The hydrothermal synthesis of PZT includes nucleation and crystal growth processes at 120°C or 140°C. The crystallization states were investigated by using scanning electron microscopy and X-Ray diffraction. Piezoelectric properties were evaluated from unimorph cantilever type actuators made of the films. The relationships between the deflection of the actuator due to piezoelectric transverse effect and applied electric field in the direction of thickness of the films showed good linearity. The output voltage from the films under cyclic compressive loading increased with increasing loading frequency, and is saturated at 10 Hz. The PZT films produced by the present methods are satisfactory as a smart material, and are better than the films produced using TiCl 4 as Ti precursor.


2001 ◽  
Vol 84 (12) ◽  
pp. 2921-2929 ◽  
Author(s):  
Alexandre E. Glazounov ◽  
Hans Kungl ◽  
Jan-Thorsten Reszat ◽  
Michael J. Hoffmann ◽  
Arnd Kolleck ◽  
...  

2021 ◽  
Vol 8 (3) ◽  
pp. 14-19
Author(s):  
Thuy Nguyen Thanh ◽  
Tung Nguyen Van ◽  
Hung Nguyen Trong ◽  
Minh Cao Duy

Lanthanum-doped lead zirconate titanate (PLZT) powders were synthesized using thehydrothermal method. The influence of pH, reaction temperature and time, lanthanum concentration on the formation and characteristics of PLZT were investigated. Obtained powders were investigated using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) techniques and a dielectric analyzer. The results showed that           Pb1-xLax(Zr0.65Ti0.35)O3 with x= 0.0 – 0.1 were well formed under conditions: pH≥13, reaction time of 12hrs, reaction temperature of 180oC. Dielectric constant of PLZT is higher than PZT. The grain size of the PLZT is found to be 1–3.5 µm.


Sign in / Sign up

Export Citation Format

Share Document