THE EFFECT OF POSITION DEPENDENT EFFECTIVE MASS OF HYDROGENIC IMPURITIES IN PARABOLIC GaAs/GaAlAs QUANTUM DOTS IN A STRONG MAGNETIC FIELD

2009 ◽  
Vol 23 (26) ◽  
pp. 5109-5118 ◽  
Author(s):  
A. JOHN PETER

The binding energy of shallow hydrogenic impurities in parabolic GaAs/GaAlAs quantum dots is calculated as a function of dot radius in the influence of magnetic field. The binding energy has been calculated following a variational procedure within the effective-mass approximation. Calculations are presented with constant effective-mass and position dependent effective masses. A finite confining potential well with depth is determined by the discontinuity of the band gap in the quantum dot and the cladding. The results show that the impurity binding energy (i) increases as the dot radius decreases for the infinite case, (ii) reaches a peak value around 1R* as the dot radius decreases and then diminishes to a limiting value corresponding to the radius for which there are no bound states in the well for the infinite case, and (iii) increases with the magnetic field. Also it is found that (i) the use of constant effective mass (0.067 m0) is justified for dot sizes ≥ a* where a* is the effective Bohr radius which is about 100 Å for GaAs , in the estimation of ionization energy and (ii) the binding energy shows complicated behavior when the position dependent mass is included for the dot size ≤ a*. These results are compared with the available existing literatures.

2011 ◽  
Vol 10 (04n05) ◽  
pp. 665-668 ◽  
Author(s):  
A. MERWYN JASPER DE REUBEN ◽  
K. JAYAKUMAR

The effect of geometry, concentration of Mn ion and the magnetic field on the binding energy of a donor and the donor bound magnetic polaronic shift in a finite Cd 1–x1 Mn x1 Te / Cd 1–x2 Mn x2 Te Quantum Dot within the effective mass approximation is carried out employing the variational principle. The results are presented and discussed.


2006 ◽  
Vol 05 (01) ◽  
pp. 173-181 ◽  
Author(s):  
A. JOHN PETER

The binding energies of shallow acceptors in Cd 1-x in Mn x in Te/ Cd 1-x out Mn x out Te quantum dots are calculated in the presence of external magnetic fields. Variational calculations are performed within effective mass approximation. The results show that the impurity binding energy (i) increases with the reduction in dot sizes, (ii) decreases with the magnetic field is increased for a given dot, and (iii) reaches a peak value as the dot radius decreases and then diminishes to a limiting value corresponding to the radius for which there are no bound states in the quantum dot. Spin polaronic shifts are estimated with the acceptor envelope function using a mean field theory. These results are compared with the existing literatures.


2021 ◽  
Author(s):  
Zhuang Zhao

Abstract The effects of tuned quantum dots (QD) on the optical rectification (OR) coefficient under the action of the external magnetic field, hydrostatic pressure, temperature and quantum dot radius is theoretically studied in detail. The tuned quantum dots are subjected to a uniform magnetic field perpendicular to the structure plane. Within the framework of effective mass approximation and parabolic approximation, the energy level and wave function are derived, and the nonlinear optical rectification coefficients are calculated by the compact density matrix method and iterative method. Numerical results show that under different constraint parameters, the resonance peak of the OR coefficient moves in the direction of high energy or low energy, that is, red shift or blue shift. At the same time, the peak value of the OR coefficient will increase or decrease with the change of the parameters.


2011 ◽  
Vol 25 (32) ◽  
pp. 2451-2459 ◽  
Author(s):  
U. YESILGUL ◽  
F. UNGAN ◽  
E. KASAPOGLU ◽  
H. SARI ◽  
I. SÖKMEN

The intersubband transitions and impurity binding energy in differently shaped semiconductor quantum wells under a magnetic field are calculated using a variational method within the effective mass approximation. Our calculations have revealed the dependence of the intersubband transitions and impurity binding energy on the magnetic field strength and the shape of the quantum wells.


2013 ◽  
Vol 380-384 ◽  
pp. 4837-4840
Author(s):  
Xiu Zhi Duan ◽  
Guang Xin Wang

The electron states of self-assembled rectangular quantum wires (QWRs) are investigated in detail in the presence of a magnetic field. The calculations are done in the single band effective mass approximation. We study the electron states for the magnetic fields applied along and perpendicular to the wire, taking into account the different masses of the various particles inside and outside the QWRs. The electron energy and the influence of the magnetic field are discussed in this paper.


2007 ◽  
Vol 21 (17) ◽  
pp. 3035-3044 ◽  
Author(s):  
A. JOHN PETER

Using a variational approach, the binding energy of shallow hydrogenic impurities in a semimagnetic parabolic quantum dot is calculated within the effective mass approximation. The binding energy is computed for Cd 1-x in Mn x in Te / Cd 1-x out Mn x out Te structures as a function of the dot size in an external magnetic field. The results show that the impurity binding energy (i) increases with the reduction in dot sizes (ii) decreases when the magnetic field is increased for a given dot and (iii) increases to a maximum value at 100 Å and then decreases as the size of the dot increases beyond 100 Å for a realistic model. Spin polaronic shifts are estimated using a mean field theory. These results are compared with the existing literatures.


1958 ◽  
Vol 36 (9) ◽  
pp. 1161-1167 ◽  
Author(s):  
R. R. Haering

The linear Zeeman effect of the 2p m = ± 1 donor states is calculated in the effective mass approximation. The resulting level splitting is independent of the longitudinal mass characterizing the ellipsoidal conduction band energy surfaces. This result is valid as long as the Zeeman splitting of the m = ±1 states is small compared to the energy difference between the 2p m = 0 and the 2p m = ± 1 states. The Zeeman pattern to be expected in germanium is plotted as a function of the angle between the magnetic field and the (100) direction.


2002 ◽  
Vol 16 (20n22) ◽  
pp. 3238-3243
Author(s):  
A. ARDAVAN ◽  
E. RZEPNIEWSKI ◽  
R. S. EDWARDS ◽  
J. SINGLETON ◽  
Y. MAENO

We report a study of the angle-dependent millimetre-wave magnetoconductivity of the p-wave triplet-paired perovskite superconductor Sr 2 RuO 4. We find two harmonic series. We assign the first to interlayer cyclotron resonance of the β-Fermi surface and its harmonics, yielding a cyclotron effective mass of [Formula: see text]. We assign the second series, which contains only odd harmonics, to cyclotron resonance of the γ-Fermi surface, yielding a cyclotron effective mass of [Formula: see text]. In addition, we find a very strong absorption mode in the presence of a magnetic field component parallel to the quasi-two-dimensional (Q2D) planes of the sample. Its dependence on the orientation of the magnetic field cannot be described in the context of conventional Q2D cyclotron resonance, and the origin of this mode is not yet clear.


Sign in / Sign up

Export Citation Format

Share Document