STUDY OF MICROSTRUCTURE OF HYDROCARBON DOPED MgB2 WIRES BY TRANSMISSION ON ELECTRON MICROSCOPY

2009 ◽  
Vol 23 (17) ◽  
pp. 3492-3496
Author(s):  
SEONG GU KANG ◽  
JUN-KI CHUNG ◽  
SUNG CHANG PARK ◽  
DAE GIL JEONG ◽  
CHEOL JIN KIM

The microstructure of the MgB 2 wires with hydrocarbon, pyrene (C16H10) addition has been investigated by transmission electron microscopy (TEM) equipped with energy-dispersive X-ray spectroscopy (EDX). In our study, MgB 2 wires have been fabricated through powder-in-tube (PIT) process using pure Fe as sheath material and sintered at 600°C ~800°C for 30min to 4 hrs under high purity argon gas. TEM and EDS analyses were conducted on the specimens prepared by tripod polishing and ion milling method. The structural features such as second phases, interface and defects were investigated by electron microscopy.

Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Author(s):  
R.R. Russell

Transmission electron microscopy of metallic/intermetallic composite materials is most challenging since the microscopist typically has great difficulty preparing specimens with uniform electron thin areas in adjacent phases. The application of ion milling for thinning foils from such materials has been quite effective. Although composite specimens prepared by ion milling have yielded much microstructural information, this technique has some inherent drawbacks such as the possible generation of ion damage near sample surfaces.


Author(s):  
F. Shaapur

Non-uniform ion-thinning of heterogenous material structures has constituted a fundamental difficulty in preparation of specimens for transmission electron microscopy (TEM). A variety of corrective procedures have been developed and reported for reducing or eliminating the effect. Some of these techniques are applicable to any non-homogeneous material system and others only to unidirectionalfy heterogeneous samples. Recently, a procedure of the latter type has been developed which is mainly based on a new motion profile for the specimen rotation during ion-milling. This motion profile consists of reversing partial revolutions (RPR) within a fixed sector which is centered around a direction perpendicular to the specimen heterogeneity axis. The ion-milling results obtained through this technique, as studied on a number of thin film cross-sectional TEM (XTEM) specimens, have proved to be superior to those produced via other procedures.XTEM specimens from integrated circuit (IC) devices essentially form a complex unidirectional nonhomogeneous structure. The presence of a variety of mostly lateral features at different levels along the substrate surface (consisting of conductors, semiconductors, and insulators) generally cause non-uniform results if ion-thinned conventionally.


Author(s):  
R. J. Lauf ◽  
H. Keating

The preparation of fragmented or particulate ceramic materials for transmission electron microscopy (TEM) examination has traditionally been difficult, particularly if a durable, permanent specimen is desired. Furthermore, most established methods for dealing with micron- and submicron-sized samples (e.g., dispersion in plastic films) do not permit selection of orientations or ion thinning. A technique has been developed that is useful for a variety of materials, permits the selection of specimen orientation, is compatible with ion milling requirements, and produces a durable specimen that can be reexamined later if necessary.


2015 ◽  
Author(s):  
Ludmila L. Meisner ◽  
Alexey A. Neiman ◽  
Alexander I. Lotkov ◽  
Nikolai N. Koval ◽  
Viktor O. Semin ◽  
...  

1998 ◽  
Vol 523 ◽  
Author(s):  
John Mardinly ◽  
David W. Susnitzky

AbstractThe demand for increasingly higher performance semiconductor products has stimulated the semiconductor industry to respond by producing devices with increasingly complex circuitry, more transistors in less space, more layers of metal, dielectric and interconnects, more interfaces, and a manufacturing process with nearly 1,000 steps. As all device features are shrunk in the quest for higher performance, the role of Transmission Electron Microscopy as a characterization tool takes on a continually increasing importance over older, lower-resolution characterization tools, such as SEM. The Ångstrom scale imaging resolution and nanometer scale chemical analysis and diffraction resolution provided by modem TEM's are particularly well suited for solving materials problems encountered during research, development, production engineering, reliability testing, and failure analysis. A critical enabling technology for the application of TEM to semiconductor based products as the feature size shrinks below a quarter micron is advances in specimen preparation. The traditional 1,000Å thick specimen will be unsatisfactory in a growing number of applications. It can be shown using a simple geometrical model, that the thickness of TEM specimens must shrink as the square root of the feature size reduction. Moreover, the center-targeting of these specimens must improve so that the centertargeting error shrinks linearly with the feature size reduction. To meet these challenges, control of the specimen preparation process will require a new generation of polishing and ion milling tools that make use of high resolution imaging to control the ion milling process. In addition, as the TEM specimen thickness shrinks, the thickness of surface amorphization produced must also be reduced. Gallium focused ion beam systems can produce hundreds of Ångstroms of amorphised surface silicon, an amount which can consume an entire thin specimen. This limitation to FIB milling requires a method of removal of amorphised material that leaves no artifact in the remaining material.


1990 ◽  
Vol 110 (4) ◽  
pp. 883-894 ◽  
Author(s):  
R Reichelt ◽  
A Holzenburg ◽  
E L Buhle ◽  
M Jarnik ◽  
A Engel ◽  
...  

Nuclear pore complexes (NPCs) prepared from Xenopus laevis oocyte nuclear envelopes were studied in "intact" form (i.e., unexposed to detergent) and after detergent treatment by a combination of conventional transmission electron microscopy (CTEM) and quantitative scanning transmission electron microscopy (STEM). In correlation-averaged CTEM pictures of negatively stained intact NPCs and of distinct NPC components (i.e., "rings," "spoke" complexes, and "plug-spoke" complexes), several fine structural features arranged with octagonal symmetry about a central axis could reproducibly be identified. STEM micrographs of unstained/freeze-dried intact NPCs as well as of their components yielded comparable but less distinct features. Mass determination by STEM revealed the following molecular masses: intact NPC with plug, 124 +/- 11 MD; intact NPC without plug, 112 +/- 11 MD; heavy ring, 32 +/- 5 MD; light ring, 21 +/- 4 MD; plug-spoke complex, 66 +/- 8 MD; and spoke complex, 52 +/- 3 MD. Based on these combined CTEM and STEM data, a three-dimensional model of the NPC exhibiting eightfold centrosymmetry about an axis perpendicular to the plane of the nuclear envelope but asymmetric along this axis is proposed. This structural polarity of the NPC across the nuclear envelope is in accord with its well-documented functional polarity facilitating mediated nucleocytoplasmic exchange of molecules and particles.


1992 ◽  
Vol 7 (8) ◽  
pp. 2225-2229 ◽  
Author(s):  
Z.G. Li ◽  
P.F. Carcia ◽  
P.C. Donohue

The microstructure of LaB6-base thick film resistors was investigated by cross-sectional transmission electron microscopy. The specimens were prepared by a technique that polished them to a thin wedge, thus avoiding ion-milling and permitting imaging over a distance of tens of microns. The resistor microstructure contained a finely divided electrically conductive phase of TaB2 and nonconducting crystals of CaTa4O11, formed during high temperature processing of glass and LaB6 ingredients of the thick film ink. Using higher surface area ingredients virtually suppressed the formation of CaTa4O11 crystals, and the microstructure became more uniform. Resistors made with higher surface area intermediates also had better voltage withstanding properties.


1985 ◽  
Vol 62 ◽  
Author(s):  
Tung Hsu ◽  
S. R. Nutt

ABSTRACTSurfaces of commercially grown edge-defined film-fed growth sapphire (EFG α-Al2O3) were studied in the electron microscope using both reflection electron microscopy (REM) and conventional transmission electron microscopy (TEM). The as-grown sapphire surface, ostensibly {1120}, was characterized by “rooftop” structures which were often locally periodic. These rooftop structures consisted of alternating {1120} facets and additional facets inclined a few degrees. The crystallography of the surface facets was analyzed using REM imaging of bulk specimens, and trace analysis of back-thinned plan section TEM specimens. Surface roughness was measured by stylus profilometry. and these measurements were compared to the electron microscopy observations. Fine structural features parallel to <0110> directions were also observed in both REM and TEM experiments, and these were attributed to surface steps of atomic scales.


Sign in / Sign up

Export Citation Format

Share Document