ELECTRICAL AND OPTICAL PROPERTIES OF ZnO THIN FILMS PREPARED BY R.F. MAGNETRON SPUTTERING

2011 ◽  
Vol 25 (20) ◽  
pp. 2741-2749 ◽  
Author(s):  
J. C. ZHOU ◽  
L. LI ◽  
L. Y. RONG ◽  
B. X. ZHAO ◽  
Y. M. CHEN ◽  
...  

High transparency and conductivity of transparent conducting oxide thin film are very important for improving the efficiency of solar cells. ZnO thin film is a better candidate for transparent conductive layer of solar cell. N-type ZnO thin films were prepared by radio-frequency magnetron sputtering on glass substrates. ZnO thin films underwent annealing treatment after deposition. The influence of the sputtering power on the surface morphology, the electrical and optical properties were studied by AFM, XRD, UV2450 and HMS-3000. The experimental results indicate that the crystal quality of ZnO thin film is improved and all films show higher c-axis orientation with increasing sputtering power from 50 to 125 W. The average transparency of ZnO thin films is higher than 90% in the range of 400–900 nm between the sputtering power of 50–100 W. After the rapid thermal annealing at 550°C for 300 s under N2 ambient, the minimum resistivity reach to 10-2Ω⋅ cm .

2013 ◽  
Vol 832 ◽  
pp. 460-465 ◽  
Author(s):  
Nor Diyana Md Sin ◽  
M.H. Mamat ◽  
M. Rusop

The effect of deposition time on properties of ZnO nanostructured thin film was investigated. The ZnO thin films were deposited at various times from 15~75 minutes. The ZnO thin film at 60 min deposition time shows the highest current density and high conductivity with 2.15x10-2 Scm-1. The optical properties of ZnO thin films show high transmittance with >80% at 380 nm to 1200 nm. The thickness of ZnO thin film increases linearly with deposition time. The size of ZnO thin films increase as the deposition time increase. Based from fesem images, the ZnO nanocolumnar structure was formed at 15 to 60 minutes deposition time while at 75 minutes the sample formed nanoflakes structure.


2011 ◽  
Vol 1288 ◽  
Author(s):  
Rashmi Menon ◽  
K. Sreenivas ◽  
Vinay Gupta

ABSTRACTZinc Oxide (ZnO), II-VI compound semiconductor, is a promising material for ultraviolet (UV) photon sensor applications due to its attractive properties such as good photoconductivity, ease processing at low temperatures and excellent radiation hardness. The rf magnetron sputtering is a suitable deposition technique due to better control over stoichiometry and deposition of uniform film. Studies have shown that the presence of surface defects in ZnO and subsequently their passivation are crucial for enhanced photo-response characteristics, and to obtain the fast response speed. Worldwide efforts are continuing to develop good quality ZnO thin films with novel design structures for realization of an efficient UV photon sensor. In the present work, UV photon sensor is fabricated using a ZnO thin films deposited by rf magnetron sputtering on the corning glass substrate. Photo-response, (Ion/Ioff) of as-grown ZnO film of thickness 100 nm is found to be 3×103 with response time of 90 ms for UV intensity of 140 μW/cm2 (λ = 365 nm). With irradiation on ZnO thin film by pulsed Nd:YAG laser (forth harmonics 266 nm), the sensitivity of the UV sensor is found to enhance. The photo-response increases after laser irradiation to 4x104 with a fast response speed of 35 ms and attributed to the change in surface states and the native defects in the ZnO thin film. Further, enhancement in the ultraviolet (UV) photo-response (8×104) of detector was observed after integrating the nano-scale islands of Sn metal on the surface of laser irradiated ZnO thin film.


2018 ◽  
Vol 278 ◽  
pp. 48-53 ◽  
Author(s):  
Hao Liang

ZnO thin films have been paid more attention by the scientific community because of their long wavelength and high temperature resistance, and the method of preparing ZnO-TFT by magnetron sputtering is one of the most widely recognized technologies. In this paper, the influence factors, such as sputtering power, sputtering oxygen argon ratio and sputtering temperature, are introduced. In this paper, the ZnO thin film substrate materials are analyzed, and the corresponding conclusions are obtained.


2011 ◽  
Vol 306-307 ◽  
pp. 362-367
Author(s):  
Feng Lu ◽  
Yu Sun ◽  
Cheng Hai Xu

The high quality ZAO thin films were successfully produced by DC reaction magnetron sputtering technology. The XRD,electrical and optical properties of films are particular investigated. The results show that ZAO films are polycrystalline hexagonal wurtzite structure,and Al2O3 crystal phase are not found. At the same time,the high quality ZAO films with the minimum resistivity of 4.5x10-4Ω•㎝, the transmittance in visible region above 80% and the reflectivity in IR region above 70% are gained.


2019 ◽  
Vol 15 (32) ◽  
pp. 114-121
Author(s):  
Maysar A. Salim

Zinc Oxide (ZnO) thin films of different thickness were preparedon ultrasonically cleaned corning glass substrate, by pulsed laserdeposition technique (PLD) at room temperature. Since mostapplication of ZnO thin film are certainly related to its opticalproperties, so the optical properties of ZnO thin film in thewavelength range (300-1100) nm were studied, it was observed thatall ZnO films have high transmittance (˃ 80 %) in the wavelengthregion (400-1100) nm and it increase as the film thickness increase,using the optical transmittance to calculate optical energy gap (Egopt)show that (Egopt) of a direct allowed transition and its value nearlyconstant (~ 3.2 eV) for all film thickness (150, 180, 210, and 240)nm, so Zn0 thin films were used as a transparent conducting oxide(TCO) in various optoelectronic application such as a window in athin film solar cells.


Sign in / Sign up

Export Citation Format

Share Document