scholarly journals COMPARISON OF A GENERAL SERIES EXPANSION METHOD AND THE HOMOTOPY ANALYSIS METHOD

2010 ◽  
Vol 24 (15) ◽  
pp. 1699-1706 ◽  
Author(s):  
CHENG-SHI LIU ◽  
YANG LIU

A simple analytic tool, namely the general series expansion method, is proposed to find the solutions for nonlinear differential equations. A set of suitable basis functions [Formula: see text] is chosen such that the solution to the equation can be expressed by [Formula: see text]. In general, t0 can control and adjust the convergence region of the series solution such that our method has the same effect as the homotopy analysis method proposed by Liao, but our method is simpler and clearer. As a result, we show that the secret parameter h in the homotopy analysis methods can be explained by using our parameter t0. Therefore, our method reveals a key secret in the homotopy analysis method. For the purpose of comparison with the homotopy analysis method, a typical example is studied in detail.

2018 ◽  
Vol 7 (4) ◽  
pp. 287-301
Author(s):  
Kourosh Parand ◽  
Yasaman Lotfi ◽  
Jamal Amani Rad

AbstractIn the present work, the problem of Hiemenz flow through a porous medium of a incompressible non-Newtonian Rivlin-Ericksen fluid with heat transfer is presented and newly developed analytic method, namely the homotopy analysis method (HAM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. This flow impinges normal to a plane wall with heat transfer. It has been attempted to show capabilities and wide-range applications of the homotopy analysis method in comparison with the numerical method in solving this problem. Also the convergence of the obtained HAM solution is discussed explicitly. Our reports consist of the effect of the porosity of the medium and the characteristics of the Non-Newtonian fluid on both the flow and heat.


In this chapter, the analytic solution of nonlinear partial differential equations arising in heat transfer is obtained using the newly developed analytic method, namely the Homotopy Analysis Method (HAM). The homotopy analysis method provides us with a new way to obtain series solutions of such problems. This method contains the auxiliary parameter provides us with a simple way to adjust and control the convergence region of series solution. By suitable choice of the auxiliary parameter, we can obtain reasonable solutions for large modulus.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Shaheed N. Huseen ◽  
Said R. Grace

A modifiedq-homotopy analysis method (mq-HAM) was proposed for solvingnth-order nonlinear differential equations. This method improves the convergence of the series solution in thenHAM which was proposed in (see Hassan and El-Tawil 2011, 2012). The proposed method provides an approximate solution by rewriting thenth-order nonlinear differential equation in the form ofnfirst-order differential equations. The solution of thesendifferential equations is obtained as a power series solution. This scheme is tested on two nonlinear exactly solvable differential equations. The results demonstrate the reliability and efficiency of the algorithm developed.


2011 ◽  
Vol 66 (1-2) ◽  
pp. 117-122
Author(s):  
Qi Wang

In this paper, the optimal homotopy analysis method is applied to find the solitary wave solutions of the Kuramoto-Sivashinsky equation. With three auxiliary convergence-control parameters, whose possible optimal values can be obtained by minimizing the averaged residual error, the method used here provides us with a simple way to adjust and control the convergence region of the solution. Compared with the usual homotopy analysis method, the optimal method can be used to get much faster convergent series solutions.


Author(s):  
Dr. K.V.Tamil Selvi , Et. al.

In this paper, analysis of nonlinear partial differential equations on velocities and temperature with convective boundary conditions are investigated. The governing partial differential equations are transformed into ordinary differential equations by applying similarity transformations. The system of nonlinear differential equations are solved using Homotopy Analysis Method (HAM). An analytical solution is obtained for the values of Magnetic parameter M2, Prandtl number Pr, Porosity parameter


Sign in / Sign up

Export Citation Format

Share Document