CRYSTALLOGRAPHIC, FERROELECTRIC AND ELECTRONIC PROPERTIES OF THE Sr2ZrTiO6 DOUBLE PEROVSKITE

2013 ◽  
Vol 27 (20) ◽  
pp. 1350141 ◽  
Author(s):  
D. A. LANDÍNEZ TÉLLEZ ◽  
L. A. CARRERO BERMÚDEZ ◽  
C. E. DELUQUE TORO ◽  
R. CARDONA ◽  
J. ROA-ROJAS

In this paper, we report structural analysis, ferroelectric behavior and electronic structure of Sr 2 ZrTiO 6 double perovskite. Samples were produced by the solid state reaction recipe. Crystallographic analysis was performed by Rietveld refinement of experimental X-ray diffraction patterns. Results show that this material crystallizes in a tetragonal perovskite structure which corresponds to the space group I4/m. The curve of polarization as a function of applied voltage evidences a ferroelectric character with saturation polarization on the application of voltages up to 1800 V. Calculations of density of states and band structure for this manganite-like material were carried out by means of the density functional theory implemented into the Wien2k code. Results of total and partial density of states reveal the insulator character of this material with an energy gap of 2.66 eV.

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Jairo Roa-Rojas

We report structural analysis, surface morphology, magnetic ordering, dielectric response, optical feature and the electronic structure of the Dy2BiFeO6 novel complex perovskite. The samples were produced by the standard solid-state reaction recipe. Crystallographic analysis was performed by Rietveld refinement of experimental X-ray diffraction patterns. Results show that this material crystallizes in a perovskite with orthorhombic structure, which corresponds to the Pnma (#62) space group. From the Curie-Weiss fitting on the curve of susceptibility as a function of temperature we establish that the ordering corresponds to a paramagnetic-antiferromagnetic transition, with a Weiss temperature q=-18,5 K, which is compatible with the behavior of the inverse of susceptibility as a function of temperature, and a Néel temperatura TN=50,8 K. The Curie constant allowed for us to obtain an effective magnetic moment of 15,7 mB. The result of magnetization as a function of the applied field, measured at T=50 K, shows a magnetic hysteresis behavior that corroborate the magnetic ordering present for this temperature value. Measurements of the dielectric constant as a function of applied frequencies at room temperature give as a result a high relative dielectric constant (e=780). The reflectance curve as a function of the wavelength reveals the typical behavior of a double perovskite-like material and permits to obtain the energy gap 2,74 eV, which is characteristic of a semiconductor material.


2020 ◽  
Vol 71 (6) ◽  
pp. 178-193
Author(s):  
Liao Chunfa ◽  
Xu Zhenxin ◽  
Zou Jianbai ◽  
Jiang Pinguoo

Based on the density functional theory, this paper presents the calculated cellular electronic properties of BiCl3, BiOCl and Bi3O4Cl, including unit cell energy, band structure, total density of states, partial density of states, Mulliken population, overlapping population, etc. Combined with the thermodynamic analysis of Bi3+ hydrolysis process in chlorine salt system, the conversion mechanism of oxychloride bond in BiCl3 to form BiOCl and Bi3O4Cl by hydrolysis, ethanololysis and ethylene glycol alcohololysis was obtained by infrared spectroscopy. The results indicate that the energy of Bi3O4Cl cell system was lower than that of BiOCl cell, indicating that the structure of Bi3O4Cl was more stable. From the analysis of bond fluctuation, the electron nonlocality in BiOCl belt was relatively large, and the orbital expansibility was strong; thus the structure of BiOCl was relatively active. The state density map of Bi3O4Cl had the widest energy gap, i.e., the covalent bond between Bi3O4Cl was stronger than BiOCl. Therefore, the hydrolysis of BiCl3 would preferentially generate Bi3O4Cl with a more stable structure. The number of charge arrangement, overlapping population and infrared spectrogram indicate that there were two basic ways in the hydrolysis and alcoholysis of BiCl3. Firstly, two chlorine atoms in BiCl3 were replaced by hydroxyl groups ionized by water and alcohol to form [Bi(OH)2Cl] monomer, and BiOCl and Bi3O4Cl were formed by intra-molecular dehydration or inter-molecular dehydration. The other way was that the Bi atom directly reacted with the OH ionized by water and alcohol to form the [Bi-OH] monomer, and the Cl atom replaced the H atom on the hydroxyl group in the [Bi-OH] monomer to further form BiOCl and Bi3O4Cl.


2011 ◽  
Vol 299-300 ◽  
pp. 498-502 ◽  
Author(s):  
Hong Sheng Zhao ◽  
Yu Dan Gu ◽  
Nan Zhang ◽  
Ya Hong Gao

Based on the density functional theory, the structure of pure ZnO, N doped, and Ga-N/Ga-2N co-doped wurtzite ZnO was calculated by using first-principle plane wave ultrasoft pseudopotential method. Electronic structures of these ZnO-based doping syetems were studied. The calculations of band structure, total density of states, and partial density of states show that Ga-2N donor/acceptor co-doped ZnO is easier to implement the p-type ZnO than other cases.


2013 ◽  
Vol 709 ◽  
pp. 197-200 ◽  
Author(s):  
Pei Ting Ma ◽  
Tian Min Lei ◽  
Yu Ming Zhang ◽  
Jia Jia Liu ◽  
Zhi Yong Zhang

Magnetic properties of 6H-SiC doped with transition metal (TM) atoms are calculated using the density functional theory method (DFT). It is shown that TM doped in a 6H-SiC host may have both magnetic and nonmagnetic states. From the figures of their density of states (DOS) and partial density of states (PDOS) and to compare the energy differences between ferromagnetic and nonmagnetic states, we demonstrate that Cr and Mn-doped 6H-SiC emerge a half-metallic ferromagnetic state, Co and Ni-doped 6H-SiC create very little magnetic features, while Fe-doped 6H-SiC is in the nonmagnetic state. We also calculate the energy differences between ferromagnetic and antiferromagnetic of Cr, Mn and Fe-doped 6H-SiC in the doping concentration (8.34%). It is found that the energy of the antiferromagnetic state is lower than that of the ferromagnetic state.


2020 ◽  
Vol 35 (3) ◽  
pp. 197-205
Author(s):  
W. Wong-Ng ◽  
G. Y. Liu ◽  
D. D. Shi ◽  
Y. Q. Yang ◽  
R. Derbeshi ◽  
...  

X-ray reference powder patterns and structures have been determined for a series of cobalt- and tungsten-containing cubic alkaline-earth perovskites, (BaxSr1–x)2CoWO6 (x = 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9). The structure of the end members of the series, Sr2CoWO6 and Ba2CoWO6, were tetragonal and cubic, respectively, agreeing with the literature data. From Rietveld refinements, it was found that when x = 0.1 and 0.2, the structure was tetragonal I4/m (a = 5.60481(6) and 5.62305(11) Å and c = 7.97989(12) and 7.9847(2) Å, respectively; Z = 2). When x > 0.2, the structure was cubic (Fm$\bar{3}$m, No. 225; Z = 4) (from x = 0.3 to 0.9, a increases from 7.98399(13) to 8.08871(10) Å). This tetragonal series of compounds exhibit the characteristics of a distorted double-perovskite structure. The bond valence sum values for the alkaline-earth (Ba, Sr) sites in all (BaxSr1−x)2CoWO6 members are greater than the ideal value of 2.0, indicating over-bonding situation, whereas for the W sites, as x increases, a change from under-bonding to slightly over-bonding situation was observed. Density functional theory calculations revealed that while Sr2CoWO6 is a semiconductor, Ba2CoWO6 and SrBaCoWO6 are half-metals. Powder X-ray diffraction patterns of this series of compounds (BaxSr1−x)2CoWO6, with x = 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9, have been submitted to be included in the Powder Diffraction File.


2018 ◽  
Vol 60 (7) ◽  
pp. 1290
Author(s):  
Е.А. Беленков ◽  
В.А. Грешняков

AbstractThe method of the density functional theory is used to study structural transformations between graphites and diamond-like phases. The calculations have been carried out in two approximations: a local density approximation and a generalized gradient approximation. It is found that the phase transitions of hexagonal graphene layers to a cubic diamond and diamond-like phases must occur at uniaxial compressions of ~57–71 GPa, whereas some diamond-like phases can be obtained from tetragonal graphene layers at significantly lower pressures of 32–52 GPa. The X-ray diffraction patterns have been calculated for the phase transition of graphite I 4_1/ amd to tetragonal LA 10 phase that takes place at the minimum pressure that can be used for experimental identification of these compounds.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5970
Author(s):  
Nabil Al-Zaqri ◽  
Mohammed Suleiman ◽  
Anas Al-Ali ◽  
Khaled Alkanad ◽  
Karthik Kumara ◽  
...  

The exo⇔endo isomerization of 2,5-dimethoxybenzaldehyde was theoretically studied by density functional theory (DFT) to examine its favored conformers via sp2–sp2 single rotation. Both isomers were docked against 1BNA DNA to elucidate their binding ability, and the DFT-computed structural parameters results were matched with the X-ray diffraction (XRD) crystallographic parameters. XRD analysis showed that the exo-isomer was structurally favored and was also considered as the kinetically preferred isomer, while several hydrogen-bonding interactions detected in the crystal lattice by XRD were in good agreement with the Hirshfeld surface analysis calculations. The molecular electrostatic potential, Mulliken and natural population analysis charges, frontier molecular orbitals (HOMO/LUMO), and global reactivity descriptors quantum parameters were also determined at the B3LYP/6-311G(d,p) level of theory. The computed electronic calculations, i.e., TD-SCF/DFT, B3LYP-IR, NMR-DB, and GIAO-NMR, were compared to the experimental UV–Vis., optical energy gap, FTIR, and 1H-NMR, respectively. The thermal behavior of 2,5-dimethoxybenzaldehyde was also evaluated in an open atmosphere by a thermogravimetric–derivative thermogravimetric analysis, indicating its stability up to 95 °C.


2010 ◽  
Vol 25 (6) ◽  
pp. 1030-1036 ◽  
Author(s):  
Pengxian Lu ◽  
Zigang Shen ◽  
Xing Hu

To investigate the effects of substituting Ag and Sb for Pb on the thermoelectric properties of PbTe, the electronic structures of PbTe and AgPb18SbTe20 were calculated by using the linearized augmented plane wave based on the density-functional theory of the first principles. By comparing the differences in the band structure, the partial density of states (PDOS), the scanning transmission microscope, and the electron density difference for PbTe and AgPb18SbTe20, we explained the reason from the aspect of electronic structures why the thermoelectric properties of AgPb18SbTe20 could be improved significantly. Our results suggest that the excellent thermoelectric properties of AgPb18SbTe20 should be attributed in part to the narrowing of its band gap, band structure anisotropy, the much extrema and large DOS near Fermi energy, as well as the large effective mass of electrons. Moreover, the complex bonding behaviors for which the strong bonds and the weak bonds are coexisted, and the electrovalence and covalence of Pb–Te bond are mixed should also play an important role in the enhancement of the thermoelectric properties of the AgPb18SbTe20.


2020 ◽  
Author(s):  
Saeedeh Mohammadi ◽  
Mohammad Esmailpour ◽  
Mina Mohammadi

Abstract This paper is a new step in helping the treatment of coronavirus by improving the performance of chloroquine drug. For this purpose, we propose a complex of chloroquine drug with graphene nanoribbon (GNR) scheme. We compute the structural and electrical properties and absorption of chloroquine (C18H26ClN3) and GNR complex using the density functional theory (DFT) method. By creating a drug and GNR complex, the density of states of electrons increases and the energy gap decreases compared to the chloroquine. Also, using absorption calculations and spectrums such as infrared and UV-Vis spectra, we showed that GNR is a suitable structure for creating chloroquine drug complex. Our results show that the dipole moment, global softness and electrophilicity for the drug complex increases compared to the non-complex state. Our calculations can be useful for increasing performance and reducing the side effects of chloroquine, and thus can be effective in treating coronavirus.


2020 ◽  
Vol 17 (35) ◽  
pp. 1148-1158
Author(s):  
Mohammed L. JABBAR ◽  
Kadhum J. AL-SHEJAIRY

Chemical doping is a promising route to engineering and controlling the electronic properties of the zigzag graphene nanoribbon (ZGNR). By using the first-principles of the density functional theory (DFT) calculations at the B3LYP/ 6-31G, which implemented in the Gaussian 09 software, various properties, such as the geometrical structure, DOS, HOMO, LUMO infrared spectra, and energy gap of the ZGNR, were investigated with various sites and concentrations of the phosphorus (P). It was observed that the ZGNR could be converted from linear to fractal dimension by using phosphorus (P) impurities. Also, the fractal binary tree of the ZGNR and P-ZGNR structures is a highlight. The results demonstrated that the energy gap has different values, which located at this range from 0.51eV to 1.158 eV for pristine ZGNR and P-ZGNR structures. This range of energy gap is variable according to the use of GNRs in any apparatus. Then, the P-ZGNR has semiconductor behavior. Moreover, there are no imaginary wavenumbers on the evaluated vibrational spectrum confirms that the model corresponds to minimum energy. Then, these results make P-ZGNR can be utilized in various applications due to this structure became more stable and lower reactivity.


Sign in / Sign up

Export Citation Format

Share Document