The global stability of two epidemic models with nonlinear recovery incidence rate

2018 ◽  
Vol 32 (29) ◽  
pp. 1850357
Author(s):  
Yue Pan ◽  
Dechang Pi ◽  
Shuanglong Yao ◽  
Han Meng

In this paper, we present two epidemic models with a nonlinear incidence and transfer from infectious to recovery. For epidemic models, the basic reproductive number is calculated. A dynamic system based on threshold, using LaSalle’s invariance principle and Lyapunov function, is structured completely by the basic reproductive number. By studying the SIR and SIRS models under the nonlinear condition, the general validity of the method is verified.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Huaqin Peng ◽  
Zhiming Guo

A viral infection model with saturated incidence rate and viral infection with delay is derived and analyzed; the incidence rate is assumed to be a specific nonlinear formβxv/(1+αv). The existence and uniqueness of equilibrium are proved. The basic reproductive numberR0is given. The model is divided into two cases: with or without delay. In each case, by constructing Lyapunov functionals, necessary and sufficient conditions are given to ensure the global stability of the models.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1164
Author(s):  
Weiwei Ling ◽  
Pinxia Wu ◽  
Xiumei Li ◽  
Liangjin Xie

By using differential equations with discontinuous right-hand sides, a dynamic model for vector-borne infectious disease under the discontinuous removal of infected trees was established after understanding the transmission mechanism of Huanglongbing (HLB) disease in citrus trees. Through calculation, the basic reproductive number of the model can be attained and the properties of the model are discussed. On this basis, the existence and global stability of the calculated equilibria are verified. Moreover, it was found that different I0 in the control strategy cannot change the dynamic properties of HLB disease. However, the lower the value of I0, the fewer HLB-infected citrus trees, which provides a theoretical basis for controlling HLB disease and reducing expenditure.


Author(s):  
Laid Chahrazed

In this work, we consider a nonlinear epidemic model with temporary immunity and saturated incidence rate. Size N(t) at time t, is divided into three sub classes, with N(t)=S(t)+I(t)+Q(t); where S(t), I(t) and Q(t) denote the sizes of the population susceptible to disease, infectious and quarantine members with the possibility of infection through temporary immunity, respectively. We have made the following contributions: The local stabilities of the infection-free equilibrium and endemic equilibrium are; analyzed, respectively. The stability of a disease-free equilibrium and the existence of other nontrivial equilibria can be determine by the ratio called the basic reproductive number, This paper study the reduce model with replace S with N, which does not have non-trivial periodic orbits with conditions. The endemic -disease point is globally asymptotically stable if R0 ˃1; and study some proprieties of equilibrium with theorems under some conditions. Finally the stochastic stabilities with the proof of some theorems. In this work, we have used the different references cited in different studies and especially the writing of the non-linear epidemic mathematical model with [1-7]. We have used the other references for the study the different stability and other sections with [8-26]; and sometimes the previous references.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 693-709
Author(s):  
Sowwanee Jitsinchayakul ◽  
Rahat Zarin ◽  
Amir Khan ◽  
Abdullahi Yusuf ◽  
Gul Zaman ◽  
...  

Abstract Coronavirus disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS CoV-2). It was declared on March 11, 2020, by the World Health Organization as a pandemic disease. Regrettably, the spread of the virus and mortality due to COVID-19 have continued to increase daily. The study is performed using the Atangana–Baleanu–Caputo operator with a harmonic mean type incidence rate. The existence and uniqueness of the solutions of the fractional COVID-19 epidemic model have been developed using the fixed point theory approach. Along with stability analysis, all the basic properties of the given model are studied. To highlight the most sensitive parameter corresponding to the basic reproductive number, sensitivity analysis is taken into account. Simulations are conducted using the first-order convergent numerical approach to determine how parameter changes influence the system’s dynamic behavior.


2012 ◽  
Vol 05 (04) ◽  
pp. 1250037 ◽  
Author(s):  
LONGXING QI ◽  
JING-AN CUI ◽  
YUAN GAO ◽  
HUAIPING ZHU

A compartmental model is established for schistosomiasis infection in Qianzhou and Zimuzhou, two islets in the center of Yangtzi River near Nanjing, P. R. China. The model consists of five differential equations about the susceptible and infected subpopulations of mammalian Rattus norvegicus and Oncomelania snails. We calculate the basic reproductive number R0 and discuss the global stability of the disease free equilibrium and the unique endemic equilibrium when it exists. The dynamics of the model can be characterized in terms of the basic reproductive number. The parameters in the model are estimated based on the data from the field study of the Nanjing Institute of Parasitic Diseases. Our analysis shows that in a natural isolated area where schistosomiasis is endemic, killing snails is more effective than killing Rattus norvegicus for the control of schistosomiasis.


2008 ◽  
Vol 16 (04) ◽  
pp. 519-529 ◽  
Author(s):  
XIAOWEI WANG ◽  
JIE LOU

Our models characterize the transmission dynamics of rabies between human and dogs. Firstly, we build an ODE model to represent the natural spreading of rabies in dogs and human. We get the basic reproductive number R0 and the global stability for both the disease-free equilibrium and the endemic equilibrium. Then, we build a controlling model for rabies. We compare the efficiency of three strategies for controlling the rabies: culling, vaccination, culling and vaccination, and get controlling thresholds for different strategies. The results of analysis and simulations indicate that vaccination is the best choice and culling is the worst one to control rabies. Vaccination on dogs in cities and culling and vaccination on dogs in rural areas of China are recommended for controlling rabies. Our study provides a theoretical basis for controlling rabies in China.


2019 ◽  
Vol 27 (1) ◽  
pp. 157-177 ◽  
Author(s):  
FABIO SANCHEZ ◽  
JUAN G. CALVO

We construct an epidemic model for the transmission of dengue fever with an early-life stage in the vector dynamics and age-structure within hosts. The early-life stage of the vector is modeled via a general function that supports multiple vector densities. The basic reproductive number and vector demographic threshold are computed to study the local and global stability of the infection-free state. A numerical framework is implemented and simulations are performed.


Author(s):  
Muhammad Naeem Jan ◽  
Gul Zaman ◽  
Nigar Ali ◽  
Imtiaz Ahmad ◽  
Zahir Shah

It is very important to note that a mathematical model plays a key role in different infectious diseases. Here, we study the dynamical behaviors of both hepatitis B virus (HBV) and hepatitis C virus (HCV) with their co-infection. Actually, the purpose of this work is to show how the bi-therapy is effective and include an inhibitor for HCV infection with some treatments, which are frequently used against HBV. Local stability, global stability and its prevention from the community are studied. Mathematical models and optimality system of nonlinear DE are solved numerically by RK4. We use linearization, Lyapunov function and Pontryagin’s maximum principle for local stability, global stability and optimal control, respectively. Stability curves and basic reproductive number are plotted with and without control versus different values of parameters. This study shows that the infection will spread without control and can cover with treatment. The intensity of HBV/HCV co-infection is studied before and after optimal treatment. This represents a short drop after treatment. First, we formulate the model then find its equilibrium points for both. The models possess four distinct equilibria: HBV and HCV free, and endemic. For the proposed problem dynamics, we show the local as well as the global stability of the HBV and HCV. With the help of optimal control theory, we increase uninfected individuals and decrease the infected individuals. Three time-dependent variables are also used, namely, vaccination, treatment and isolation. Finally, optimal control is classified into optimality system, which we can solve with Runge–Kutta-order four method for different values of parameters. Finally, we will conclude the results for implementation to minimize the infected individuals.


2013 ◽  
Vol 791-793 ◽  
pp. 1314-1317
Author(s):  
Wei Juan Pang ◽  
Zhi Xing Hu ◽  
Fu Cheng Liao

This paper investigates the global stability of a viral infection model of HBV infection of hepatocytes with saturated infection rate and intracellular delay. we obtain if the basic reproductive number is less than or equal to one, the infection-free equilibrium is globally asymptotically stable. If its greater than one, we obtain the sufficient conditions for the global stability of the infected equilibrium.


Sign in / Sign up

Export Citation Format

Share Document