Stability and Hopf bifurcation analysis of a new four-dimensional hyper-chaotic system

2020 ◽  
Vol 34 (29) ◽  
pp. 2050327
Author(s):  
Liangqiang Zhou ◽  
Ziman Zhao ◽  
Fangqi Chen

With both analytical and numerical methods, local dynamic behaviors including stability and Hopf bifurcation of a new four-dimensional hyper-chaotic system are studied in this paper. All the equilibrium points and their stability conditions are obtained with the Routh–Hurwitz criterion. It is shown that there may exist one, two, or three equilibrium points for different system parameters. Via Hopf bifurcation theory, parameter conditions leading to Hopf bifurcation is presented. With the aid of center manifold and the first Lyapunov coefficient, it is also presented that the Hopf bifurcation is supercritical for some certain parameters. Finally, numerical simulations are given to confirm the analytical results and demonstrate the chaotic attractors of this system. It is also shown that the system may evolve chaotic motions through periodic bifurcations or intermittence chaos while the system parameters vary.

Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 842
Author(s):  
Pengfei Ding ◽  
Xiaoyi Feng

A novel chaotic system for generating multi-scroll attractors based on a Jerk circuit using a special form of a sine function (SFSF) is proposed in this paper, and the SFSF is the product of a sine function and a sign function. Although there are infinite equilibrium points in this system, the scroll number of the generated chaotic attractors is certain under appropriate system parameters. The dynamical properties of the proposed chaotic system are studied through Lyapunov exponents, phase portraits, and bifurcation diagrams. It is found that the scroll number of the chaotic system in the left and right part of the x-y plane can be determined arbitrarily by adjusting the values of the parameters in the SFSF, and the size of attractors is dominated by the frequency of the SFSF. Finally, an electronic circuit of the proposed chaotic system is implemented on Pspice, and the simulation results of electronic circuit are in agreement with the numerical ones.


Author(s):  
HUI CAO ◽  
Dongxue Yan ◽  
Xiaxia Xu

This paper deals with an SIR model with age structure of infected individuals. We formulate the model as an abstract non-densely defined Cauchy problem and derive the conditions for the existence of all the feasible equilibrium points of the system. The criteria for both stability and instability involving system parameters are obtained. Bifurcation analysis indicates that the system with age structure exhibits Hopf bifurcation which is the main result of this paper. Finally, some numerical examples are provided to illustrate our obtained results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Yuanyuan Chen ◽  
Ya-Qing Bi

A delay-differential modelling of vector-borne is investigated. Its dynamics are studied in terms of local analysis and Hopf bifurcation theory, and its linear stability and Hopf bifurcation are demonstrated by studying the characteristic equation. The stability and direction of Hopf bifurcation are determined by applying the normal form theory and the center manifold argument.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2145
Author(s):  
Pengfei Ding ◽  
Xiaoyi Feng ◽  
Lin Fa

A three directional (3-D) multi-scroll chaotic attractors based on the Jerk system with nonlinearity of the sine function and sign function is introduced in this paper. The scrolls in the X-direction are generated by the sine function, which is a modified sine function (MSF). In addition, the scrolls in Y and Z directions are generated by the sign function series, which are the superposition of some sign functions with different time-shift values. In the X-direction, the scroll number is adjusted by changing the comparative voltages of the MSF, and the ones in Y and Z directions are regulated by the sign function. The basic dynamics of Lyapunov exponent spectrum, phase diagrams, bifurcation diagram and equilibrium points distribution were studied. Furthermore, the circuits of the chaotic system are designed by Multisim10, and the circuit simulation results indicate the feasibility of the proposed chaotic system for generating chaotic attractors. On the basis of the circuit simulations, the hardware circuits of the system are designed for experimental verification. The experimental results match with the circuit simulation results, this powerfully proves the correctness and feasibility of the proposed system for generating 3-D grid multi-scroll chaotic attractors.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 564 ◽  
Author(s):  
Jesus Munoz-Pacheco ◽  
Ernesto Zambrano-Serrano ◽  
Christos Volos ◽  
Sajad Jafari ◽  
Jacques Kengne ◽  
...  

In this work, a new fractional-order chaotic system with a single parameter and four nonlinearities is introduced. One striking feature is that by varying the system parameter, the fractional-order system generates several complex dynamics: self-excited attractors, hidden attractors, and the coexistence of hidden attractors. In the family of self-excited chaotic attractors, the system has four spiral-saddle-type equilibrium points, or two nonhyperbolic equilibria. Besides, for a certain value of the parameter, a fractional-order no-equilibrium system is obtained. This no-equilibrium system presents a hidden chaotic attractor with a `hurricane’-like shape in the phase space. Multistability is also observed, since a hidden chaotic attractor coexists with a periodic one. The chaos generation in the new fractional-order system is demonstrated by the Lyapunov exponents method and equilibrium stability. Moreover, the complexity of the self-excited and hidden chaotic attractors is analyzed by computing their spectral entropy and Brownian-like motions. Finally, a pseudo-random number generator is designed using the hidden dynamics.


Author(s):  
Aria Alasty ◽  
Rasool Shabani

This study investigates chaotic response in the spring-pendulum system. In this system beside of strange attractors, multiple regular attractors may coexist for some values of system parameters, where it is important to study the global behavior of the system using the basin boundaries of the attractors. Multiple scales method is used to distinguish the regions of stable and unstable attractors. In unstable regions, bifurcation diagram and poincare´ maps are used to study the existence of quasi-periodic and chaotic attractors. Results show that the jumping phenomena may occur when multiple regular attractors exist and for this case fractal basins of attraction are developed using numerical simulations.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Faqiang Wang ◽  
Yufang Xiao

Based on the step function and signum function, a chaotic system which can generate multiscroll chaotic attractors with arrangement of saddle-shapes is proposed and the stability of its equilibrium points is analyzed. The under mechanism for the generation of multiscroll chaotic attractors and the reason for the arrangement of saddle shapes and being symmetric about y-axis are presented, and the rule for controlling the number of scroll chaotic attractors with saddle shapes is designed. Based on the core chips including Altera Cyclone IV EP4CE10F17C8 Field Programmable Gate Array and Digital to Analog Converter chip AD9767, the peripheral circuit and the Verilog Hardware Description Language program for realization of the proposed multiscroll chaotic system is constructed and some experimental results are presented for confirmation. The research result shows that the occupation of multipliers and Phase-Locked Loops in Field Programmable Gate Array is zero.


2012 ◽  
Vol 562-564 ◽  
pp. 2088-2091
Author(s):  
Xian Yong Wu ◽  
Yi Long Cheng ◽  
Kai Liu ◽  
Xin Liang Yu ◽  
Xian Qian Wu

The chaotic dynamics of the unified chaotic system and the Rossler system with different fractional-order are studied in this paper. The research shows that the chaotic attractors can be found in the two systems while the orders of the systems are less than three. Asymptotic synchronization of response and drive systems is realized by active control through designing proper controller when system parameters are known. Theoretical analysis and simulation results demonstrate the effective of this method.


2018 ◽  
Vol 8 (11) ◽  
pp. 2132 ◽  
Author(s):  
Xiong Wang ◽  
Akif Akgul ◽  
Unal Cavusoglu ◽  
Viet-Thanh Pham ◽  
Duy Vo Hoang ◽  
...  

Systems with many equilibrium points have attracted considerable interest recently. A chaotic system with a line equilibrium has been studied in this work. The system has infinite equilibria and exhibits coexisting chaotic attractors. The system with an infinite number of equilibria has been realized by an electronic circuit, which confirms the feasibility of the system. Based on such a system, we have developed a new S-Box generation algorithm. With the developed algorithm, two new S-Boxes are produced. Performance tests of S-Boxes are performed. The tests have shown that proposed S-Boxes have good performance results.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Wenju Du ◽  
Yandong Chu ◽  
Jiangang Zhang ◽  
Yingxiang Chang ◽  
Jianning Yu ◽  
...  

In order to further understand a Lorenz-like system, we study the stability of the equilibrium points and the existence of Hopf bifurcation by center manifold theorem and normal form theory. More precisely, we designed a washout controller such that the equilibriumE0undergoes a controllable Hopf bifurcation, and by adjusting the controller parameters, we delayed Hopf bifurcation phenomenon of the equilibriumE+. Besides, numerical simulation is given to illustrate the theoretical analysis. Finally, two possible electronic circuits are given to realize the uncontrolled and the controlled systems.


Sign in / Sign up

Export Citation Format

Share Document