EPITAXIALLY GROWN YBCO THIN FILMS ON LOW LOSS LaAlO3 SUBSTRATE

1990 ◽  
Vol 04 (05) ◽  
pp. 369-373 ◽  
Author(s):  
Y. Z. ZHANG ◽  
L. LI ◽  
Y. Y. ZHAO ◽  
B. R. ZHAO ◽  
Y. G. WANG ◽  
...  

A planar dc magnetron sputtering device was used to prepare high T c and high J c YBCO thin films. Both single crystal and polycrystal thin films were successfully grown on (100) oriented LaAlO 3 substrates. Zero resistance temperature T c0 = 92.3 K and critical current density J c (0) = 3.82 × 106 A/cm 2 at 77 K was obtained. The films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

2007 ◽  
Vol 546-549 ◽  
pp. 1699-1702
Author(s):  
Xi Ying Zhou ◽  
Liang He ◽  
Yan Hui Liu

Al-Cu-Fe quasicrystals powder was used to prepare the thin films on the surface of the A3 steel by the means of DMD-450 vacuum evaporation equipment. The thin films with different characterization were obtained through different parameters. The microstructures of the thin films were analyzed by Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Additionally, the nano-hardness and the modulus of the films are tested by MTS and Neophot micro-hardness meter. The results showed that the modulus of the films was about 160GPa. Nano hardness of the films was about 7.5 Gpa. The films consisted of CuAl2, AlCu3. The thickness and the micro-hardness of the films are improved. In same way, with the increase of the electric current, the thickness and the hardness of the films are also improved. Along with increase of the time and the electric current, the wear behavior of the films was improved. To some extent, the microstructure of films contained the quasicrystal phase of Al65Cu20Fe15.


2015 ◽  
Vol 1088 ◽  
pp. 81-85 ◽  
Author(s):  
T.N. Myasoedova ◽  
Victor V. Petrov ◽  
Nina K. Plugotarenko ◽  
Dmitriy V. Sergeenko ◽  
Galina Yalovega ◽  
...  

Thin SiO2ZrO2films were prepared, up to 0.2 μm thick, by means of the sol–gel technology and characterized by a Scanning electron microscopy and X-ray diffraction. It is shown the presence of monoclinic, cubic and tetragonal phases of ZrO2in the SiO2matrix. The crystallites sizes depend on the annealing temperature of the film and amount to 35 and 56 nm for the films annealed at 773 and 973 K, respectively. The films resistance is rather sensitive to the presence of NO2and O3impurity in air at lower operating temperatures in the range of 30-60°C.


1990 ◽  
Vol 201 ◽  
Author(s):  
Kevin M. Hubbard ◽  
Nicole Bordes ◽  
Michael Nastasi ◽  
Joseph R. Tesmer

AbstractWe have investigated the fabrication of thin-film superconductors by Cu-ion implantation into initially Cu-deficient Y(BaF2)Cu thin films. The precursor films were co-evaporated on SrTiO3 substrates, and subsequently implanted to various doses with 400 keV 63Cu2+. Implantations were preformed at both LN2 temperature and at 380°C. The films were post-annealed in oxygen, and characterized as a function of dose by four-point probe analysis, X-ray diffraction, ion-beam backscattering and channeling, and scanning electron microscopy. It was found that a significant improvement in film quality could be achieved by heating the films to 380°C during the implantation. The best films became fully superconducting at 60–70 K, and exhibited good metallic R vs. T. behavior in the normal state.


1998 ◽  
Vol 541 ◽  
Author(s):  
Shunxi Wang ◽  
Qingxin Su ◽  
Marc A. Robert ◽  
Thomas A. Rabson

AbstractA low temperature metal-organic decomposition process for depositing LiNbO3 thin films on diamond/Si(100) substrates is reported. X-ray diffraction studies show that the films are highly textured polycrystalline LiNbO3 with a (012) orientation. Scanning electron microscopy analyses reveal that the LiNbO3 thin films have dense, smooth surface without cracks and pores, and adhere very well to the diamond substrates. The grain size in the LiNbO3 thin films is in the range of ∼0.2-0.5 μm. The effect of the processing procedures on the surface morphology of the LiNbO3 films is investigated. Possible reasons for the elimination of microcracks in the LiNbO3 films are discussed.


2016 ◽  
Vol 30 (35) ◽  
pp. 1650394
Author(s):  
Li Zhang ◽  
Yibao Li ◽  
Zhen Tang ◽  
Yan Deng ◽  
Hui Yuan ◽  
...  

In this paper, all solution processing is used to prepare both the transparent conducting Ba[Formula: see text]La[Formula: see text]SnO3 (BLSO) thin films as bottom electrodes and ferroelectric Bi6Fe2Ti3O[Formula: see text] (BFTO) thin films. The derived BFTO thin films are characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The derived thin film is polycrystalline with dense microstructures. The remnant polarization [Formula: see text] at the measurement frequency of 2 kHz can reach [Formula: see text] under the 500 kV/cm electric field and the coercive field [Formula: see text] is 410 kV/cm. The results will provide a feasible route to prepare BFTO thin films on transparent conducting bottom electrodes to realize multifunctionality.


2008 ◽  
Vol 8 (4) ◽  
pp. 1757-1761 ◽  
Author(s):  
Ajeet Kaushik ◽  
Jitendra Kumar ◽  
M. K. Tiwari ◽  
R. Khan ◽  
B. D. Malhotra ◽  
...  

Polyaniline (PANI)–ZnO nanocomposite thin film has been successfully fabricated on glass substrates by using vacuum deposition technique. The as-grown PANI–ZnO nanocomposite thin films have been characterized using X-ray diffraction, Scanning Electron Microscopy, Atomic Force Microscopy, UV-visible spectrophotometer and Fourier Transform Infrared (FTIR) spectroscopy, respectively. X-ray diffraction of as-grown film shows the reflection of ZnO nanoparticles along with a broad peak of PANI. The surface morphology of nanocomposite films has been investigated using scanning electron microscopy and atomic force microscopy. The hypsochromic shift of the UV absorption band corresponding to π–π* transition in polymeric chain of PANI and a band at 504 cm –1 due to ZnO nanoparticles has been observed in the FTIR spectra. The hydrogen bonding between the imine group of PANI and ZnO nanoparticle has been confirmed from the presence of the absorbance band at 1151 cm–1 in the FTIR spectra of the nanocomposite thin films.


1992 ◽  
Vol 260 ◽  
Author(s):  
J. S. Reid ◽  
R. P. Ruiz ◽  
E. Kolawa ◽  
J. S. Chen ◽  
J. Madok ◽  
...  

ABSTRACTThin films of sputtered, amorphous Ta36Si14N50 (a metallic conductor) and Si3N4 (an insulator) were evaluated as encapsulants for (100)-oriented InP substrates. Thicknesses of both films were approximately 100 nm. During a 15 min annealing in Ar, liberated phosphorus was gettered by a <Si>ISiO2ITa(100 nm) collector placed face-to-face on encapsulated or non-encapsulated InP. The stability of the InP with the encapsulant was characterized by backscattering spectrometry, scanning electron microscopy, and x-ray diffraction. As measured by 4He++ backscattering spectrometry, detectable amounts of phosphorus do not arise in the Ta collectors for the Ta-Si-N and Si3N4 encapsulation schemes until 650 and 700°C, respectively. Failure of the Ta36Si14N50 film is catastrophic at 700°C whereas the Si3N4 film degrades locally commencing at 600°C.


1991 ◽  
Vol 226 ◽  
Author(s):  
H.S. Koo ◽  
T.L. Kuo ◽  
D.H. Kuo ◽  
R.J. Lin ◽  
W.H. Lee ◽  
...  

AbstractSuperconducting TI-Ba-Ca-Cu-O(TBCCO) films with zero resistance temperatures above 100K have been prepared on (001)MgO single-crystal substrates by the combination techniques of spray pyrolysis and Tl-diffusion. The as-sprayed Ba-Ca-Cu-O films and the sintered TBCCO superconducting bulks were wrapped in Au foil and heated in oxygen at temperatures ranging from 890 to 920°C and cooled to room temperature by furnace cooling. Highly c-axis oriented superconducting films were obtained and their average thicknesses were about 5-10 μm. The characteristics of TBCCO films by X-ray diffraction, scanning electron microscopy and electrical property are discussed.


Sign in / Sign up

Export Citation Format

Share Document