scholarly journals Leaf Recognition using Texture Features for Herbal Plant Identification

Author(s):  
Zaidah Ibrahim ◽  
Nurbaity Sabri ◽  
Nur Nabilah Abu Mangshor

This research investigates the application of texture features for leaf recognition for herbal plant identification.  Malaysia is rich with herbal plants but not many people can identify them and know about their uses.   Preservation of the knowledge of these herb plants is important since it enables the general public to gain useful knowledge which they can apply whenever necessary.  Leaf image is chosen for plant recognition since it is available and visible all the time.   Unlike flowers that are not always available or roots that are not visible and not easy to obtain, leaf is the most abundant type of data available in botanical reference collections.  A comparative study has been conducted among three popular texture features that are Histogram of Oriented Gradients (HOG), Local Binary Pattern (LBP) and Speeded-Up Robust Features (SURF) with multiclass Support Vector Machine (SVM) classifier.  A new leaf dataset has been constructed from ten different herb plants.  Experimental results using the new constructed dataset and Flavia, an existing dataset, indicate that HOG and LBP produce similar leaf recognition performance and they are better than SURF.

2017 ◽  
Vol 14 (2) ◽  
pp. 49
Author(s):  
Nurbaity Sabri ◽  
Noor Hazira Yusof ◽  
Zaidah` Ibrahim ◽  
Zolidah Kasiran ◽  
Nur Nabilah Abu Mangshor

Text localisation determines the location of the text in an image. This process is performed prior to text recognition. Localising text on shop signage is a challenging task since the images of the shop signage consist of complex background, and the text occurs in various font types, sizes, and colours. Two popular texture features that have been applied to localise text in scene images are a histogram of oriented gradient (HOG) and speeded up robust features (SURF). A comparative study is conducted in this paper to determine which is better with support vector machine (SVM) classifier. The performance of SVM is influenced by its kernel function and another comparative study is conducted to identify the best kernel function. The experiments have been conducted using primary data collected by the authors. Results indicate that HOG with quadratic kernel function localises text for shop signage better than SURF.


2017 ◽  
Vol 14 (2) ◽  
pp. 49
Author(s):  
Nurbaity Sabri ◽  
Noor Hazira Yusof ◽  
Zaidah Ibrahim ◽  
Zolidah Kasiran ◽  
Nur Nabilah Abu Mangshor

Text localisation determines the location of the text in an image. This process is performed prior to text recognition.  Localising text on shop signage is a challenging task since the images of the shop signage consist of complex background, and the text occurs in various font types, sizes, and colours. Two popular texture features that have been applied to localise text in scene images are a histogram of oriented gradient (HOG) and speeded up robust features (SURF).  A comparative study is conducted in this paper to determine which is better with support vector machine (SVM) classifier. The performance of SVM is influenced by its kernel function and another comparative study is conducted to identify the best kernel function. The experiments have been conducted using primary data collected by the authors. Results indicate that HOG with quadratic kernel function localises text for shop signage better than SURF.


Author(s):  
Htwe Pa Pa Win ◽  
Phyo Thu Thu Khine ◽  
Khin Nwe Ni Tun

This paper proposes a new feature extraction method for off-line recognition of Myanmar printed documents. One of the most important factors to achieve high recognition performance in Optical Character Recognition (OCR) system is the selection of the feature extraction methods. Different types of existing OCR systems used various feature extraction methods because of the diversity of the scripts’ natures. One major contribution of the work in this paper is the design of logically rigorous coding based features. To show the effectiveness of the proposed method, this paper assumed the documents are successfully segmented into characters and extracted features from these isolated Myanmar characters. These features are extracted using structural analysis of the Myanmar scripts. The experimental results have been carried out using the Support Vector Machine (SVM) classifier and compare the pervious proposed feature extraction method.


2020 ◽  
Vol 9 (2) ◽  
pp. 109 ◽  
Author(s):  
Bo Cheng ◽  
Shiai Cui ◽  
Xiaoxiao Ma ◽  
Chenbin Liang

Feature extraction of an urban area is one of the most important directions of polarimetric synthetic aperture radar (PolSAR) applications. A high-resolution PolSAR image has the characteristics of high dimensions and nonlinearity. Therefore, to find intrinsic features for target recognition, a building area extraction method for PolSAR images based on the Adaptive Neighborhoods selection Neighborhood Preserving Embedding (ANSNPE) algorithm is proposed. First, 52 features are extracted by using the Gray level co-occurrence matrix (GLCM) and five polarization decomposition methods. The feature set is divided into 20 dimensions, 36 dimensions, and 52 dimensions. Next, the ANSNPE algorithm is applied to the training samples, and the projection matrix is obtained for the test image to extract the new features. Lastly, the Support Vector machine (SVM) classifier and post processing are used to extract the building area, and the accuracy is evaluated. Comparative experiments are conducted using Radarsat-2, and the results show that the ANSNPE algorithm could effectively extract the building area and that it had a better generalization ability; the projection matrix is obtained using the training data and could be directly applied to the new sample, and the building area extraction accuracy is above 80%. The combination of polarization and texture features provide a wealth of information that is more conducive to the extraction of building areas.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1443
Author(s):  
Mai Ramadan Ibraheem ◽  
Shaker El-Sappagh ◽  
Tamer Abuhmed ◽  
Mohammed Elmogy

The formation of malignant neoplasm can be seen as deterioration of a pre-malignant skin neoplasm in its functionality and structure. Distinguishing melanocytic skin neoplasms is a challenging task due to their high visual similarity with different types of lesions and the intra-structural variants of melanocytic neoplasms. Besides, there is a high visual likeliness level between different lesion types with inhomogeneous features and fuzzy boundaries. The abnormal growth of melanocytic neoplasms takes various forms from uniform typical pigment network to irregular atypical shape, which can be described by border irregularity of melanocyte lesion image. This work proposes analytical reasoning for the human-observable phenomenon as a high-level feature to determine the neoplasm growth phase using a novel pixel-based feature space. The pixel-based feature space, which is comprised of high-level features and other color and texture features, are fed into the classifier to classify different melanocyte neoplasm phases. The proposed system was evaluated on the PH2 dermoscopic images benchmark dataset. It achieved an average accuracy of 95.1% using a support vector machine (SVM) classifier with the radial basis function (RBF) kernel. Furthermore, it reached an average Disc similarity coefficient (DSC) of 95.1%, an area under the curve (AUC) of 96.9%, and a sensitivity of 99%. The results of the proposed system outperform the results of other state-of-the-art multiclass techniques.


2019 ◽  
Vol 33 (19) ◽  
pp. 1950213 ◽  
Author(s):  
Vibhav Prakash Singh ◽  
Rajeev Srivastava ◽  
Yadunath Pathak ◽  
Shailendra Tiwari ◽  
Kuldeep Kaur

Content-based image retrieval (CBIR) system generally retrieves images based on the matching of the query image from all the images of the database. This exhaustive matching and searching slow down the image retrieval process. In this paper, a fast and effective CBIR system is proposed which uses supervised learning-based image management and retrieval techniques. It utilizes machine learning approaches as a prior step for speeding up image retrieval in the large database. For the implementation of this, first, we extract statistical moments and the orthogonal-combination of local binary patterns (OC-LBP)-based computationally light weighted color and texture features. Further, using some ground truth annotation of images, we have trained the multi-class support vector machine (SVM) classifier. This classifier works as a manager and categorizes the remaining images into different libraries. However, at the query time, the same features are extracted and fed to the SVM classifier. SVM detects the class of query and searching is narrowed down to the corresponding library. This supervised model with weighted Euclidean Distance (ED) filters out maximum irrelevant images and speeds up the searching time. This work is evaluated and compared with the conventional model of the CBIR system on two benchmark databases, and it is found that the proposed work is significantly encouraging in terms of retrieval accuracy and response time for the same set of used features.


Author(s):  
KAUSHIK ROY ◽  
PRABIR BHATTACHARYA

Most existing iris recognition algorithms focus on the processing and recognition of the ideal iris images that are acquired in a controlled environment. In this paper, we process the nonideal iris images that are captured in an unconstrained situation and are affected severely by gaze deviation, eyelids and eyelashes occlusions, nonuniform intensity, motion blur, reflections, etc. The proposed iris recognition algorithm has three novelties as compared to the previous works; firstly, we deploy a region-based active contour model to segment a nonideal iris image with intensity inhomogeneity; secondly, genetic algorithms (GAs) are deployed to select the subset of informative texture features without compromising the recognition accuracy; Thirdly, to speed up the matching process and to control the misclassification error, we apply a combined approach called the adaptive asymmetrical support vector machines (AASVMs). The verification and identification performance of the proposed scheme is validated on three challenging iris image datasets, namely, the ICE 2005, the WVU Nonideal, and the UBIRIS Version 1.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Ujwalla Gawande ◽  
Mukesh Zaveri ◽  
Avichal Kapur

Recent times witnessed many advancements in the field of biometric and ultimodal biometric fields. This is typically observed in the area, of security, privacy, and forensics. Even for the best of unimodal biometric systems, it is often not possible to achieve a higher recognition rate. Multimodal biometric systems overcome various limitations of unimodal biometric systems, such as nonuniversality, lower false acceptance, and higher genuine acceptance rates. More reliable recognition performance is achievable as multiple pieces of evidence of the same identity are available. The work presented in this paper is focused on multimodal biometric system using fingerprint and iris. Distinct textual features of the iris and fingerprint are extracted using the Haar wavelet-based technique. A novel feature level fusion algorithm is developed to combine these unimodal features using the Mahalanobis distance technique. A support-vector-machine-based learning algorithm is used to train the system using the feature extracted. The performance of the proposed algorithms is validated and compared with other algorithms using the CASIA iris database and real fingerprint database. From the simulation results, it is evident that our algorithm has higher recognition rate and very less false rejection rate compared to existing approaches.


Author(s):  
Sendren Sheng-Dong Xu ◽  
Chien-Tien Su ◽  
Chun-Chao Chang ◽  
Pham Quoc Phu

This paper discusses the computer-aided (CAD) classification between Hepatocellular Carcinoma (HCC), i.e., the most common type of liver cancer, and Liver Abscess, based on ultrasound image texture features and Support Vector Machine (SVM) classifier. Among 79 cases of liver diseases, with 44 cases of HCC and 35 cases of liver abscess, this research extracts 96 features of Gray-Level Co-occurrence Matrix (GLCM) and Gray-Level Run-Length Matrix (GLRLM) from the region of interests (ROIs) in ultrasound images. Three feature selection models, i) Sequential Forward Selection, ii) Sequential Backward Selection, and iii) F-score, are adopted to determine the identification of these liver diseases. Finally, the developed system can classify HCC and liver abscess by SVM with the accuracy of 88.875%. The proposed methods can provide diagnostic assistance while distinguishing two kinds of liver diseases by using a CAD system.


2021 ◽  
Vol 40 (1) ◽  
pp. 703-714
Author(s):  
Aqib Ali ◽  
Wali Khan Mashwani ◽  
Muhammad H. Tahir ◽  
Samir Brahim Belhaouari ◽  
Hussam Alrabaiah ◽  
...  

The purpose of this study is the statistical analysis and discrimination of maize seed using a machine vision (MV) approach. The foundation of the digital image dataset holds six maize seed varieties named as Kargal K-9803, Gujjar Khan, Desi White, Pioner 30Y87, Syngenta ST-6142, and Pioner 31R88. The digital image dataset acquired via a digital imaging laboratory. For preprocessing, we crop the image into a size of 600×600 pixels, and convert it into a gray level image format. After that, line and edge detection are performed by using a Prewitt filter, and five non-overlapping areas of interest (AOIs) size of (200×200), and (250×250) are drawn. A total of 56 statistical features, containing texture features, histogram features, and spectral features, is extracted from each AOI. The 11 optimized statistical features have been selected by deploying “Correlation-based Feature Selection” (CFS) with the Greedy algorithm. For the discrimination analysis, four MV classifiers named as “Support Vector Machine” (SVM), “Logistic” (Lg), “Bagging” (B), and “LogitBoost” (LB) have been deployed on optimized statistical features dataset. After analysis, the SVM classifier has shown a promising accuracy of 99.93% on AOIs size (250×250). The obtained accuracy by SVM classifier on six maize seed varieties, namely Kargal K-9803, Gujjar Khan, Desi White, Pioner 30Y87, Syngenta ST-6142, and Pioner 31R88, were 99.9%, 99.8%, 100%, 100%, 99.9%, and 99.8%, respectively.


Sign in / Sign up

Export Citation Format

Share Document