GENERATION OF GROUNDED CAPACITOR ICCII-BASED BAND-PASS FILTERS

2007 ◽  
Vol 16 (04) ◽  
pp. 553-566 ◽  
Author(s):  
AHMED M. SOLIMAN

A new current-mode band-pass filter using the inverting second-generation current conveyor (ICCII) is introduced. The circuit is generated from a frequency-dependent negative resistance (FDNR)-C circuit realized using ICCII+. It is observed that a voltage-mode band-pass filter using two CCII+ has similar transfer function to this current-mode filter. The adjoint network theorem is used to demonstrate the transformation between the two circuits. Two new voltage-mode grounded capacitor band-pass filters using two ICCII are also introduced. The first voltage-mode circuit is generated from the FDNR-C circuit and employs two opposite Z polarity ICCII. The second voltage-mode circuit is obtained from the first circuit by relocation of the input and a grounded terminal. Two new additional grounded capacitor and grounded resistor current-mode band-pass filters with independent control on the filter Q are also introduced. Spice simulation results with 0.35 μm CMOS transistors model are included to demonstrate the practicality of the two ICCII- band-pass current-mode filter.

This article given a second generation current controlled current conveyor positive (CCCII+), second generation current controlled current conveyor negative (CCCII-), Quadrature oscillator with high-Q frequency choosing network and implementing completely different phase oscillators by employing (CCCII+) positive and (CCCII-) negative, and high band pass filter network, the approach is predicted on the CMOS technology . The root of this concept is, considering a customary voltage mode oscillator which consists of band pass filter with prime quality issue (high-Q) and voltage mode amplifier is transfigure into current mode oscillator by replacing tans-conductance amplifier. Because the loop of the oscillator is has lavish selectivity, the oscillator process less distortion. In addition 3dB bandwidth, oscillating condition, oscillation frequency of the oscillator could linearly, independently and electronically be tuned by adjusting the bias current of the (CCCII±)[1], lastly different simulations have been carried out to verify the linearity between output and input ports, range of frequency operations. These results can justify that the designed circuits are workable.


2006 ◽  
Vol 15 (06) ◽  
pp. 849-860 ◽  
Author(s):  
SAMIR BEN SALEM ◽  
DORRA SELLAMI MASMOUDI ◽  
MOURAD LOULOU

In this paper, we introduce an implementation of a CCII-based grounded inductance operating in class AB. In order to get tunable characteristics of the design, a translinear CCII configuration is used as a basic block for its high level of controllability. A frequency characterization of the translinear CCII is done. In order to optimize its static and dynamic characteristics, an algorithmic driven methodology is developed ending to the optimal transistor geometries. The optimized CCII has a current bandwidth of 1.28 GHz and a voltage bandwidth of 5.48 GHz. It is applied in the simulated inductance design. We first consider the conventional topology of the grounded inductance based on the generalized impedance converter principle. Making use of the controllable series parasitic resistance at port X in translinear CCII, we design tunable characteristics of the inductance. The effect of current conveyor's nonidealities has been taken into account. A compensation strategy has been presented. It is based on the insertion of a high active CCII-based negative resistance and a very low passive resistance. The compensation strategy does not affect the inductance tuning process. Simulation results show that the proposed inductance can be tuned in the range [0.025 μH; 15.4 μH]. The simulated inductance has been applied in a fully integrated tunable high frequency band pass filter to illustrate the versatility of the circuit. The filter is electrically tunable by controlling the conveyor's bias current.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Neeta Pandey ◽  
Sajal K. Paul

This paper presents a single current difference transconductance amplifier (CDTA) based all-pass current mode filter. The proposed configuration makes use of a grounded capacitor which makes it suitable for IC implementation. Its input impedance is low and output impedance is high, hence suitable for cascading. The circuit does not use any matching constraint. The nonideality analysis of the circuit is also given. Two applications, namely, a quadrature oscillator and a highQband pass filter are developed with the proposed circuit. The functionality of the circuit is verified with SPICE simulation using 0.35 μm TSMC CMOS technology parameters.


2004 ◽  
Vol 27 (4) ◽  
pp. 219-227 ◽  
Author(s):  
Sudhanshu Maheshwari ◽  
Iqbal A. Khan

A new four terminal current-controlled active element is introduced, where parasitic resistances at two current input ports are controlled leading to the definition of current-controlled current differencing buffered amplifier. Bipolar implementation and as application current-mode band-pass filter circuits are proposed. Simulation results using real device parameters are included, which show device bandwidth of 35 MHz, low total harmonic distortions, and tuning over a wide current range.


2013 ◽  
Vol 380-384 ◽  
pp. 3300-3303
Author(s):  
Ming Yuan Ren ◽  
Li Tian ◽  
Wei Wang ◽  
Xiao Wei Liu ◽  
Zhi Gang Mao

This paper presents a photoelectric detection circuit for microfluidics chip. The proposed photoelectric detection system can reduce noise and increase sensitivity. It is consist of pre-amplifier, ac-amplifier and band-pass filter. The transfer function of photoelectric detection circuit is introduced. The circuit implementations and simulation results are given. The proposed photoelectric detection circuit is suitable for integrated microfluidics chip.


2015 ◽  
Vol 781 ◽  
pp. 168-171
Author(s):  
Ekkapong Saising ◽  
Thanate Pattanathadapong ◽  
Pipat Prommee

This paper presents the realization of CMOS-based current-mode Elliptic ladder band-pass filter by using doubly terminated Elliptic RLC ladder band-pass filter prototype [1], [2]. The proposed circuit contains lossless integrators, lossy integrators and multiple outputs current gains. The frequency response of the proposed circuit can be electronically tuned between 1 MHz and 100 MHz by adjusting bias current between 1μA and 1,000 μA. The proposed circuit uses 1.5 V power supply and 0.1 W power consumption. The passive elements that contained in the proposed filter are only grounded capacitors without using other passive elements that can make this filter suitable for integrated circuit. PSPICE simulation results are carried out by using TSMC 0.18 μm technology and agreed well with the theory.


1964 ◽  
Vol 54 (5A) ◽  
pp. 1479-1489
Author(s):  
S. Dopp

Abstract Communication network theory is applied to the equivalent circuit of the electromagnetic seismograph. The seismograph's transfer function is derived in the general case of an arbitrary linear passive coupling network between pendulum and galvanometer. Examples are given, one of which refers to the construction of a band-pass filter in the form of a lattice of filter galvanometers.


Author(s):  
M. Reza Hidayat ◽  
Difa Dwi Juliantara Sukmawan

The use of bandpass filters is commonly used but the use of specifications varies depending on needs, in this case the microstrip bandpass filter is expected to observe the multiarms characteristics of the open loop resonator on the performance of the bandpass filter for EHF frequencies. The design of this microstrip bandpass filter uses a multiarms open loop resonator design where at the beginning of the simulation stage uses only 1 arm with patch width, arm spacing, feeder line width and patch length based on trial and error. The final simulation results are obtained with a connector distance of 2 mm and a distance of 1 mm between arms with a value of S11 = -13.8 dB and S21 = -2.8 dB at a frequency of 30.8 GHz based on the simulation results. The filter has been successfully fabricated but cannot be measured because the frequency is too high and the measuring instrument cannot measure the frequency


Sign in / Sign up

Export Citation Format

Share Document