An Automated Security Approach of Video Steganography–Based LSB Using FPGA Implementation

2019 ◽  
Vol 28 (05) ◽  
pp. 1950083 ◽  
Author(s):  
Sa’ed Abed ◽  
Mohammed Al-Mutairi ◽  
Abdullah Al-Watyan ◽  
Omar Al-Mutairi ◽  
Wesam AlEnizy ◽  
...  

Steganography has become one of the most significant techniques to conceal secret data in media files. This paper proposes a novel automated methodology of achieving two levels of security for videos, which comprise encryption and steganography techniques. The methodology enhances the security level of secret data without affecting the accuracy and capacity of the videos. In the first level, the secret data is encrypted based on Advanced Encryption Standard (AES) algorithm using Java language, which renders the data unreadable. In the second level, the encrypted data is concealed in the video frames (images) using FPGA hardware implementation that renders the data invisible. The steganographic technique used in this work is the least significant bit (LSB) method; a 1–1–0 LSB scheme is used to maintain significantly high frame imperceptibility. The video frames used as cover files are selected randomly by the randomization scheme developed in this work. The randomization method scatters the data throughout the video frames rendering the retrieval of the data in its original order, without a proper key, a challenging task. The experimental results of concealment of secret data in video frames are presented in this paper and compared with those of similar approaches. The performance in terms of area, power dissipation, and peak signal-to-noise ratio (PSNR) of the proposed method outperformed traditional approaches. Furthermore, it is demonstrated that the proposed method is capable of automatically embedding and extracting the secret data at two levels of security on video frames, with a 57.1[Formula: see text]dB average PSNR.

Author(s):  
Kaviya K ◽  
Mridula Bala ◽  
Swathy N P ◽  
Chittam Jeevana Jyothi ◽  
S.Ewins Pon Pushpa

Today, the digital and social media platforms are extremely trending, leading a demand to transmit knowledge very firmly. The information that is exchanged daily becomes ‘a victim’ to hackers. To beat this downside, one of the effective solutions is Steganography or Cryptography. In this paper, the video Steganography and cryptography thoughts are employed, where a key text is hidden behind a ‘certain frame’ of the video using Shi-Tomasi corner point detection and Least Significant Bit (LSB) algorithmic rule. Shi-Tomasi algorithmic rule is employed to observe, the corner points of the frame. In the proposed work, a ‘certain frame’ with large number of corner points is chosen from the video. Then, the secret text is embedded within the detected corner points using LSB algorithmic rule and transmitted. At the receiver end, decryption process is employed, in the reverser order of encryption to retrieve the secret data. As a technical contribution, the average variation of Mean Squared Error, Peak Signal to Noise Ratio, Structural Similarity Index are analysed for original and embedded frames and found to be 0.002, 0.016 and 0.0018 respectively.


Author(s):  
Samir Bandyopadhyay ◽  
Payal Bose ◽  
Vishal Goyel

In today’s digital media data communication over the internet increasing day by day. Therefore the data security becomes the most important issue over the internet. With the increase of data transmission, the number of intruders also increases. That’s the reason it is needed to transmit the data over the internet very securely. Steganography is a popular method in this field. This method hides the secret data with a cover medium in a way so that the intruders cannot predict the existence of the data. Here a steganography method is proposed which uses a video file as a cover medium. This method has five main steps. First, convert the video file into video frames. Then a particular frame is selected for embedded the secret data. Second, the Least Significant Bit (LSB) Coding technique is used with the double key security technique. Third, an 8 characters password verification process. Fourth, reverse the encrypted video. Fifth, signature verification process to verify the encryption and decryption process. These five steps are followed by both the encrypting and decrypting processes.


In this growing internet world, secret data communication is increasing day by day. There are various methods to communicate secretly. Steganography is one of those techniques in which data is concealed within cover data such that it cannot get detected. Steganography is usually used today on pcs where digital data is the high-speed distribution channels for carriers and networks. Steganography is the skill of understanding of unnoticeable activity at intervals. Steganalysis is the science of concealed data detection. Steganography of data which is of any form like images, audio, video or text information is done by various techniques. Image steganography is done by various technique. Least Significant Bit (LSB) with XORing and Discrete Cosine Transform (DCT) are used to test the image steganography. Images are converted to grey scale to get better accuracy. Results are tested with mean square error (MSE) and peak signal-to-noise ratio (PSNR) values.


2015 ◽  
Vol 44 (3) ◽  
pp. 315-328 ◽  
Author(s):  
Khalid Darabkh ◽  
Iyad F. Jafar ◽  
Raed T. Al-Zubi ◽  
Mohammed Hawa

With the development of internet technologies and communication services, message transmissions over the internet still have to face all kinds of security problems. Hence, how to protect secret messages during transmission becomes a challenging issue for most of current researchers. It is worth mentioning that many applications in computer science and other related fields rely on steganography and watermarking techniques to ensure information safety during communication. Unlike cryptography that focuses on scrambling the secret message so that it cannot be understood, the main objective of steganography and watermarking is to communicate securely in such a way that the hidden data are not visible to the observer. In other words, it seeks for the imperceptibility of stego-images quality to an unintended party through embedding efficiently the secret message in a digital media such as image, video, or audio. In this paper, we propose a new steganographic method to embed the secret data inside a cover image based on least-significant-bit (LSB) replacement method. The embedding process predominantly concentrates on distributing the secret message inside one share of a color image to appear like a 3D geometric shape that is constructed according to well-analyzed geometric equations. The dimensions of the geometric shape are determined pursuant to the size of secret message. Data distribution process makes our method to be of a great interest as of being so difficult for the hackers or intruders to reconstruct the shape from stego-images, thereby the security is improved. Furthermore, we compare the performance of our approach with two other relevant approaches in terms of peak signal-to-noise ratio (PSNR) and payload. The contribution of our approach was immensely impressive.DOI: http://dx.doi.org/10.5755/j01.itc.44.3.8949


2018 ◽  
Vol 3 (1) ◽  
pp. 27-32
Author(s):  
Tika Erna Putri ◽  
Muhammad Rifqi Al Fauzan ◽  
Prima Asmara Sejati

Security issues have become major problem in the field of data communications, specifically in the data transmission through the internet. One of the solutions is to hide the messages through a digital media so the attention of the attacker or third party can be avoided, this method is known as steganography. In this research, we use images as digital media. We modify the Least Significant Bit (LSB) which is the most commonly used technique in steganography. Unfortunately LSB has poor security level since it is already widely known technique. Therefore, it is important to modify the algorithm of LSB to ensure its security aspect. An improvement to LSB technique is suggested by selecting only odd pixels and ignoring even pixels in the implementation of steganography. We successfully implement the modified LSB algorithm by using RBG image and grayscale image as steganography media. Mean Squared Error (MSE) and Peak Signal-to-noise Ratio (PSNR) are employed to evaluate the stego-image quality. Our calculations show that the modified LSB algorithm provides better results than the conventional LSB. The conventional LSB algorithm gives 1.98 10-5 for MSE and 95.20893 dB for PSNR calculations, while the modified LSB gives 1. 80 10-5 and 95.6101 dB for MSE and PSNR, respectively.


Author(s):  
Kamal Jadidy Aval ◽  
Masumeh Damrudi

Security of confidential information in the insecure era of information transmission (Internet) is still one of the most important challenges of the day. The combination of cryptography and steganography increases the security of embedded data to avoid from unauthorized access. Furthermore, compression of secret data reduces the size of transmitted message. In addition to compression and encryption, in this paper, two stage steganography is employed to enhance the security. In the proposed approach, the Huffman coding as lossless compression, the Blowfish, DES, 3DES, AES, and RSA as cryptography algorithms and LSB (Least significant Bit) as steganography technique are employed with enhancement of security by two stage steganography. The results are analyzed through quality parameters including MSE (Mean Square Error) and PSNR (Peak Signal to Noise Ratio), and histogram of images.


2019 ◽  
Vol 17 (2) ◽  
pp. 147-153
Author(s):  
Ahmed Thahab

Steganography is a term that refers to the process of concealing secret data inside a cover media which can be audio, image and video. A new video steganography scheme in the wavelet domain is presented in this paper. Since the convolutional discrete wavelet transform produces float numbers, a lifted wavelet transform is used to conceal data. The method embeds secret data in the detail coefficients of each temporal array of the cover video at spatial localization using a unique embedding via YCbCr color space and complementing the secret data to minimize error in the stego video before embedding. Three secret keys are used in the scheme. Method’s performance matrices such as peak signal to noise ratio and Normalized Cross Correlation (NCC) expresses good imperceptibility for the stego-video. The value of Peak Signal to Noise Ratio (PSNR) is in range of 34-40dB, and high embedding capacity


Author(s):  
Ashwaq Alabaichi ◽  
Maisa'a Abid Ali K. Al-Dabbas ◽  
Adnan Salih

In steganography, secret data are invisible in cover media, such as text, audio, video and image. Hence, attackers have no knowledge of the original message contained in the media or which algorithm is used to embed or extract such message. Image steganography is a branch of steganography in which secret data are hidden in host images. In this study, image steganography using least significant bit and secret map techniques is performed by applying 3D chaotic maps, namely, 3D Chebyshev and 3D logistic maps, to obtain high security. This technique is based on the concept of performing random insertion and selecting a pixel from a host image. The proposed algorithm is comprehensively evaluated on the basis of different criteria, such as correlation coefficient, information entropy, homogeneity, contrast, image, histogram, key sensitivity, hiding capacity, quality index, mean square error (MSE), peak signal-to-noise ratio (PSNR) and image fidelity. Results show that the proposed algorithm satisfies all the aforementioned criteria and is superior to other previous methods. Hence, it is efficient in hiding secret data and preserving the good visual quality of stego images. The proposed algorithm is resistant to different attacks, such as differential and statistical attacks, and yields good results in terms of key sensitivity, hiding capacity, quality index, MSE, PSNR and image fidelity.


2018 ◽  
Vol 45 (6) ◽  
pp. 767-778 ◽  
Author(s):  
Amjad Rehman ◽  
Tanzila Saba ◽  
Toqeer Mahmood ◽  
Zahid Mehmood ◽  
Mohsin Shah ◽  
...  

In the current era, due to the widespread availability of the Internet, it is extremely easy for people to communicate and share multimedia contents with each other. However, at the same time, secure transfer of personal and copyrighted material has become a critical issue. Consequently, secure means of data transfer are the most urgent need of the time. Steganography is the science and art of protecting the secret data from an unauthorised access. The steganographic approaches conceal secret data into a cover file of type audio, video, text and/or image. The actual challenge in steganography is to achieve high robustness and capacity without bargaining on the imperceptibility of the cover file. In this article, an efficient steganography method is proposed for the transfer of secret data in digital images using number theory. For this purpose, the proposed method represents the cover image using the Fibonacci sequence. The representation of an image in the Fibonacci sequence allows increasing the bit planes from 8-bit to 12-bit planes. The experimental results of the proposed method in comparison with other existing steganographic methods exhibit that our method not only achieves high embedding of secret data but also gives high quality of stego images in terms of peak signal-to-noise ratio (PSNR). Furthermore, the robustness of the technique is also evaluated in the presence of salt and pepper noise attack on the cover images.


Author(s):  
Hussein Abdulameer Abdulkadhim ◽  
Jinan Nsaif Shehab

Although variety in hiding methods used to protect data and information transmitted via channels but still need more robustness and difficulty to improve protection level of the secret messages from hacking or attacking. Moreover, hiding several medias in one media to reduce the transmission time and band of channel is the important task and define as a gain channel. This calls to find other ways to be more complexity in detecting the secret message. Therefore, this paper proposes cryptography/steganography method to hide an audio/voice message (secret message) in two different cover medias: audio and video. This method is use least significant bits (LSB) algorithm combined with 4D grid multi-wing hyper-chaotic (GMWH) system. Shuffling of an audio using key generated by GMWH system and then hiding message using LSB algorithm will provide more difficulty of extracting the original audio by hackers or attackers. According to analyses of obtained results in the receiver using peak signal-to-noise ratio (PSNR)/mean square error (MSE) and sensitivity of encryption key, the proposed method has more security level and robustness. Finally, this work will provide extra security to the mixture base of crypto-steganographic methods.


Sign in / Sign up

Export Citation Format

Share Document