Comparative Analysis of the Effect of Loaded Quality Factor, Technology Node and Operating Frequency on Various Class E Power Amplifier Topologies

Author(s):  
Mir Mohsina Rahman ◽  
G. M. Rather

This paper aims to explore and compare the dependence of power amplifier performance parameters on the loaded quality factor of the resonant circuit, the technology node used and the operating frequency for different variants of the class E power amplifier. In spite of the fact that the circuit parameter variations of the basic class E amplifier are present in the literature, there is a lack of comparative analysis with respect to other class E power amplifiers based on diverse tuned load networks. Moreover, the effects of these three parameters are rarely discussed. The comparative analysis helps the designers to narrow down the selection of a power amplifier to be used for a particular application. This study is focused on the use of class E power amplifiers in biomedical implants at the Medical Implant Communication Service band and Industrial Scientific and Medical band. It is observed that the power added efficiency and the power gain have an inverse dependence on the loaded quality factor, frequency and the technology node while the output power depends directly on these parameters.

2021 ◽  
Vol 11 (9) ◽  
pp. 3727
Author(s):  
Ingrid Casallas ◽  
Carlos-Ivan Paez-Rueda ◽  
Gabriel Perilla ◽  
Manuel Pérez ◽  
Arturo Fajardo

This paper proposes an analytical expression set to determine the maximum values of currents and voltages in the Class-E Power Amplifier (PA) with Finite DC-Feed Inductance (FDI) under the following assumptions—ideal components (e.g., inductors and capacitors with infinite quality factor), a switch with zero rise and fall commutation times, zero on-resistance, and infinite off-resistance, and an infinite loaded quality factor of the output resonant circuit. The developed expressions are the average supply current, the RMS (Root Mean Square) current through the DC-feed inductance, the peak voltage and current in the switch, the RMS current through the switch, the peak voltages of the output resonant circuit, and the peak voltage and current in the PA load. These equations were obtained from the circuit analysis of this ideal amplifier and curve-fitting tools. Furthermore, the proposed expressions are a useful tool to estimate the maximum ratings of the amplifier components. The accuracy of the expressions was analyzed by the circuit simulation of twelve ideal amplifiers, which were designed to meet a wide spectrum of application scenarios. The resulting Mean Absolute Percentage Error (MAPE) of the maximum-rating constraints estimation was 2.64%.


2015 ◽  
Vol 25 (10) ◽  
pp. 663-665 ◽  
Author(s):  
Peter Song ◽  
Michael A. Oakley ◽  
A. Cagri Ulusoy ◽  
Mehmet Kaynak ◽  
Bernd Tillack ◽  
...  

2021 ◽  
Vol 19 ◽  
pp. 28-37
Author(s):  
Muhammad Noaman Zahid ◽  
Jianliang Jiang ◽  
Heng Lu ◽  
Hengli Zhang

In Radio Frequency (RF) communication, a Power Amplifier (PA) is used to amplify the signal at the required power level with less utilization of Direct Current (DC) power. The main characteristic of class-E PA is sturdy nonlinearity due to the switching mode action. In this study, a modified design of class-E PA with balanced Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) and high output power for Electronic Article Surveillance (EAS) Radio Frequency Identification (RFID) application is presented. MOSFETs are adjusted to have high output performance of about 80% for RFID-based EAS system. A matching network is also proposed for accurate matching because there are differences in the behavior between RF waves and low frequency waves. The design of a matching network is a tradeoff among the complexity, adjustability, implementation, and bandwidth for the required output power and frequency. The implemented PA is capable of providing 44.8 dBm output power with Power-Added Efficiency (PAE) of 78.5% at 7.7 MHz to 8.7 MHz.


Author(s):  
Mu-Chun Wang ◽  
Zhen-Ying Hsieh ◽  
Chieu-Ying Hsu ◽  
Shuang-Yuan Chen ◽  
Heng-Sheng Huang

In this paper, we present a single-stage class-E power amplifier with multiple-gated shape as well as 0.18μm complementary metal-oxide-semiconductor (CMOS) process for 2.4GHz Industry-Science-Medicine (ISM) band. This power amplifier is able to be easily integrated into the system-on-chip (SoC) circuit. For the competition of lower cost and high integration in marketing concern, CMOS technology is fundamentally better than GaAs technology. We adopt the Advanced Design System software in circuit simulation coming from Agilent Company through the Chip Implementation Center (CIC) channel plus TSMC 0.18 μm device models. The simulation results with temperature effect, show the good performance such as an output power achievement of +22dBm under a 1.8V supply voltage; the power-added efficiency (PAE) is over 30%; the output impedance (S22) and the input impedance (S11) are fully lower than −15dB; the power gain (S21) is +11dB; the inverse isolation (S12) is below −26dB. This amplifier reaches its 1-dB compression point at an output level of 16.5dBm related to the input power 6.5dBm position. The output power with temperature variation from 0°C to 125°C depicts an acceptable spec. range, too.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Wen An Tsou ◽  
Wen Shen Wuen ◽  
Tzu Yi Yang ◽  
Kuei Ann Wen

Analysis and compensation methodology of the AM-AM and AM-PM distortion of cascode class-E power amplifiers are presented. A physical-based model is proposed to illustrate that the nonlinear capacitance and transconductance cause the AM-AM and AM-PM distortion when modulating the supply voltage of the PA. A novel methodology that can reduce the distortion is also proposed. By degenerating common-gate transistor into a resistor, the constant equivalent impedance is obtained so that the AM-AM and AM-PM distortion is compensated. An experimental prototype of 2.6 GHz cascode class-E power amplifier with the AM-AM and AM-PM compensation has been integrated in a 0.18 μm CMOS technology, occupies a total die area of 1.6 mm2. It achieves a drain efficiency of 17.8% and a power-added efficiency of 16.6% while delivering 12 dBm of linear output power and drawing 31 mA from a 1.8 V supply. Finally, a co-simulation result demonstrated that, when the distortion of the PA has been compensated, the EVM is improved from −17 dB to −19 dB with an IEEE802.11a-like signal source.


2018 ◽  
Vol 15 (12) ◽  
pp. 20180503-20180503 ◽  
Author(s):  
Chang Liu ◽  
Xiang-Dong Huang ◽  
Qian-Fu Cheng

Sign in / Sign up

Export Citation Format

Share Document