An Ultra-Low-Power, Self-Start-Up DC-DC Boost Converter for Self-Powered IoT Node

Author(s):  
Krishna Reddy Komatla ◽  
Sreehari Rao Patri

This paper presents an ultra-low-power boost converter for self-powered IoT applications to self-start and power-up IoT devices from scratch without any requirement of an external start-up. The proposed converter and its clock generator operate in sub-threshold utilizing bulk-driven technique for low-power operation. The bulk-driven technique improves charge transfer switches for effective switching using auxiliary transistors. This approach enables a MOSFET to operate on supplies lower than its threshold voltage with a significant reduction in the reverse charge transfer and switching loss while increasing the voltage conversion efficiency and output voltage. To validate the performance of the proposed architecture, the post-layout simulation is carried out in standard CMOS 0.18[Formula: see text][Formula: see text]m technology. Under low-voltage supply of 0.4[Formula: see text]V, the simulated transient output voltage takes 110[Formula: see text][Formula: see text]s to reach 1.92[Formula: see text]V with 0.15[Formula: see text] output voltage ripple, while consuming the power of 772[Formula: see text]nW.

2013 ◽  
Vol 9 (1) ◽  
pp. 103-117 ◽  
Author(s):  
Salah-Eddine Adami ◽  
Nicolas Degrenne ◽  
Walid Haboubi ◽  
Hakim Takhedmit ◽  
Denis Labrousse ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1789
Author(s):  
Seung-Yeong Lee ◽  
Jae-Hyoung Lee ◽  
Jiyoung Lee ◽  
Woojoo Lee

In the era of the Internet of Things (IoT), the interest and demand for embedded systems have been explosively increasing. In particular, vehicular sensor networks are one of the fields where IoT-oriented embedded devices (also known as IoT devices) are being actively used. These IoT devices are widely deployed in and out of the vehicle to check vehicle conditions, prevent accidents, and support autonomous driving, forming a vehicular sensor network. In particular, such sensor networks mainly consist of third-party devices that operate independently of the vehicle and run on their own batteries. After all, like all battery-powered embedded devices, the IoT devices for the vehicular sensor network also suffer from limited power sources, and thus research on how to design/operate them energy-efficiently is drawing attention from both academia and industry. This paper notes that the vehicular sensor network may be the best application for ultra-low power system on-chips (ULP SoCs). The ULP SoCs are mainly designed based on ultra-low voltage operating (ULV) circuits, and this paper aims to realize the energy-optimized driving of the network by applying state of the art (SoA) low-power techniques exploiting the unique characteristics of ULV circuits to the IoT devices in the vehicular sensor network. To this end, this paper proposes an optimal task assignment algorithm that can achieve the best energy-efficient drive of the target network by fully utilizing the SoA low power techniques for ULV circuits. Along with a detailed description of the proposed algorithm, this paper demonstrates the effectiveness of the proposed method by providing an in-depth evaluation process and experimental results for the proposed algorithm.


Author(s):  
Ace Dimitrievski ◽  
Sonja Filiposka ◽  
Francisco José Melero ◽  
Eftim Zdravevski ◽  
Petre Lameski ◽  
...  

Connected health is expected to introduce an improvement in providing healthcare and doctor-patient communication while at the same time reducing cost. Connected health would introduce an even more significant gap between healthcare quality for urban areas with physical proximity and better communication to providers and the portion of rural areas with numerous connectivity issues. We identify these challenges using user scenarios and propose LoRa based architecture for addressing these challenges. We focus on the energy management of battery-powered, affordable IoT devices for long-term operation, providing important information about the care receivers’ well-being. Using an external ultra-low-power timer, we extended the battery life in the order of tens of times, compared to relying on low power modes of the microcontroller.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Daniel Ayala-Ruiz ◽  
Alejandro Castillo Atoche ◽  
Erica Ruiz-Ibarra ◽  
Edith Osorio de la Rosa ◽  
Javier Vázquez Castillo

Long power wide area networks (LPWAN) systems play an important role in monitoring environmental conditions for smart cities applications. With the development of Internet of Things (IoT), wireless sensor networks (WSN), and energy harvesting devices, ultra-low power sensor nodes (SNs) are able to collect and monitor the information for environmental protection, urban planning, and risk prevention. This paper presents a WSN of self-powered IoT SNs energetically autonomous using Plant Microbial Fuel Cells (PMFCs). An energy harvesting device has been adapted with the PMFC to enable a batteryless operation of the SN providing power supply to the sensor network. The low-power communication feature of the SN network is used to monitor the environmental data with a dynamic power management strategy successfully designed for the PMFC-based LoRa sensor node. Environmental data of ozone (O3) and carbon dioxide (CO2) are monitored in real time through a web application providing IoT cloud services with security and privacy protocols.


2021 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Francesco Centurelli ◽  
Riccardo Della Sala ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Alessandro Trifiletti

In this paper, we present a novel operational transconductance amplifier (OTA) topology based on a dual-path body-driven input stage that exploits a body-driven current mirror-active load and targets ultra-low-power (ULP) and ultra-low-voltage (ULV) applications, such as IoT or biomedical devices. The proposed OTA exhibits only one high-impedance node, and can therefore be compensated at the output stage, thus not requiring Miller compensation. The input stage ensures rail-to-rail input common-mode range, whereas the gate-driven output stage ensures both a high open-loop gain and an enhanced slew rate. The proposed amplifier was designed in an STMicroelectronics 130 nm CMOS process with a nominal supply voltage of only 0.3 V, and it achieved very good values for both the small-signal and large-signal Figures of Merit. Extensive PVT (process, supply voltage, and temperature) and mismatch simulations are reported to prove the robustness of the proposed amplifier.


Sign in / Sign up

Export Citation Format

Share Document