scholarly journals SLOW INVARIANT MANIFOLDS AS CURVATURE OF THE FLOW OF DYNAMICAL SYSTEMS

2008 ◽  
Vol 18 (11) ◽  
pp. 3409-3430 ◽  
Author(s):  
JEAN-MARC GINOUX ◽  
BRUNO ROSSETTO ◽  
LEON O. CHUA

Considering trajectory curves, integral of n-dimensional dynamical systems, within the framework of Differential Geometry as curves in Euclidean n-space, it will be established in this article that the curvature of the flow, i.e. the curvature of the trajectory curves of any n-dimensional dynamical system directly provides its slow manifold analytical equation the invariance of which will be then proved according to Darboux theory. Thus, it will be stated that the flow curvature method, which uses neither eigenvectors nor asymptotic expansions but only involves time derivatives of the velocity vector field, constitutes a general method simplifying and improving the slow invariant manifold analytical equation determination of high-dimensional dynamical systems. Moreover, it will be shown that this method generalizes the Tangent Linear System Approximation and encompasses the so-called Geometric Singular Perturbation Theory. Then, slow invariant manifolds analytical equation of paradigmatic Chua's piecewise linear and cubic models of dimensions three, four and five will be provided as tutorial examples exemplifying this method as well as those of high-dimensional dynamical systems.

1998 ◽  
Vol 08 (02) ◽  
pp. 189-209 ◽  
Author(s):  
Michael Hayes ◽  
Tasso J. Kaper ◽  
Nancy Kopell ◽  
Kinya Ono

In this tutorial, we illustrate how geometric singular perturbation theory provides a complementary dynamical systems-based approach to the method of matched asymptotic expansions for some classical singularly-perturbed boundary value problems. The central theme is that the criterion of matching corresponds to the criterion of transverse intersection of manifolds of solutions. This theme is studied in three classes of problems, linear: ∊y″+αy′+βy=0, semilinear: ∊y″+αy′+f(y)=0, and quasilinear: ∊y″+g(y) y′+f(y)=0, on the interval [0,1], where t∈[0,1], ′=d/dt, 0<∊≪1, and general boundary conditions y(0)=A, y(1)=B hold. Chosen for their relatively simple structure, these problems provide a useful introduction to the methods of geometric singular perturbation theory that are now widely used in dynamical systems, from reaction-diffusion equations with traveling waves to perturbed N-degree-of-freedom Hamiltonian systems, and in applications to a variety of fields.


2020 ◽  
Vol 30 (11) ◽  
pp. 2050161
Author(s):  
Arnob Ray ◽  
Dibakar Ghosh

We propose a new simple three-dimensional continuous autonomous model with two nonlinear terms and observe the dynamical behavior with respect to system parameters. This system changes the stability of fixed point via Hopf bifurcation and then undergoes a cascade of period-doubling route to chaos. We analytically derive the first Lyapunov coefficient to investigate the nature of Hopf bifurcation. We investigate well-separated regions for different kinds of attractors in the two-dimensional parameter space. Next, we introduce a timescale ratio parameter and calculate the slow manifold using geometric singular perturbation theory. Finally, the chaotic state annihilates by decreasing the value of the timescale ratio parameter.


2021 ◽  
Vol 31 (07) ◽  
pp. 2150112
Author(s):  
Jean-Marc Ginoux

Slow–fast dynamical systems, i.e. singularly or nonsingularly perturbed dynamical systems possess slow invariant manifolds on which trajectories evolve slowly. Since the last century various methods have been developed for approximating their equations. This paper aims, on the one hand, to propose a classification of the most important of them into two great categories: singular perturbation-based methods and curvature-based methods, and on the other hand, to prove the equivalence between any methods belonging to the same category and between the two categories. Then, a deep analysis and comparison between each of these methods enable to state the efficiency of the Flow Curvature Method which is exemplified with paradigmatic Van der Pol singularly perturbed dynamical system and Lorenz slow–fast dynamical system.


2018 ◽  
Vol 3 (2) ◽  
pp. 75-86
Author(s):  
Maaita Jamal Odysseas ◽  
Meletlidou Efthymia

We present a review on one of the latest developments in the field of dynamical systems, The nonlinear Targeted Energy Transfer (TET). The great significance of the phenomenon lies in the fact that the systems in which Nonlinear TET occurs present a form of self-tuning and can transfer energy over a wide variety of frequencies (resonances). This makes nonlinear TET particularly suitable in practical applications where it is necessary to extract energy from multiple ways of oscillation. Dynamical systems where nonlinear TET occurs are systems with different time scales and are singular. This property allows us to study such systems with the use of singular perturbation theory. It has been shown that Nonlinear TET is related to the bifurcation of the Slow Invariant Manifold of such systems and their slow flow.


2007 ◽  
Vol 17 (08) ◽  
pp. 2533-2540 ◽  
Author(s):  
FERDINAND VERHULST

After reviewing a number of results from geometric singular perturbation theory, we give an example of a theorem for periodic solutions in a slow manifold. This is illustrated by examples involving the van der Pol-equation and a modified logistic equation. Regarding nonhyperbolic transitions we discuss a four-dimensional relaxation oscillation and also canard-like solutions emerging from the modified logistic equation with sign-alternating growth rates.


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


2009 ◽  
Vol 19 (09) ◽  
pp. 2823-2869 ◽  
Author(s):  
Z. E. MUSIELAK ◽  
D. E. MUSIELAK

Studies of nonlinear dynamical systems with many degrees of freedom show that the behavior of these systems is significantly different as compared with the behavior of systems with less than two degrees of freedom. These findings motivated us to carry out a survey of research focusing on the behavior of high-dimensional chaos, which include onset of chaos, routes to chaos and the persistence of chaos. This paper reports on various methods of generating and investigating nonlinear, dissipative and driven dynamical systems that exhibit high-dimensional chaos, and reviews recent results in this new field of research. We study high-dimensional Lorenz, Duffing, Rössler and Van der Pol oscillators, modified canonical Chua's circuits, and other dynamical systems and maps, and we formulate general rules of high-dimensional chaos. Basic techniques of chaos control and synchronization developed for high-dimensional dynamical systems are also reviewed.


1997 ◽  
Vol 07 (07) ◽  
pp. 1617-1634 ◽  
Author(s):  
G. Millerioux ◽  
C. Mira

Recently, it was demonstrated that two chaotic dynamical systems can synchronize each other, leading to interesting applications as secure communications. We propose in this paper a special class of dynamical systems, noninvertible discrete piecewise linear, emphasizing on interesting advantages they present compared with continuous and differentiable nonlinear ones. The generic aspect of such systems, the simplicity of numerical implementation, and the robustness to mismatch of technological parameters make them good candidates. The classical concept of controllability in the control theory is presented and used in order to choose and predict the number of appropriate variables to be transmitted for synchronization. A necessary and sufficient condition of chaotic synchronization is established without computing numerical quantities, introducing a state affinity structure of chaotic systems which provides an a priori establishment of synchronization.


Sign in / Sign up

Export Citation Format

Share Document