Stability of Turing-Type Patterns in a Reaction–Diffusion System with an External Gradient

2017 ◽  
Vol 27 (01) ◽  
pp. 1750003 ◽  
Author(s):  
Tilmann Glimm ◽  
Jianying Zhang ◽  
Yun-Qiu Shen

We investigate the stability of Turing-type patterns in one spatial dimension in a system of reaction–diffusion equations with a term depending linearly on the spatial position. The system is a generic model of two interacting chemical species where production rates are dependent on a linear external gradient. This is motivated by mathematical models in developmental biology. In a previous paper, we found analytic approximations of Turing-like steady state patterns. In the present article, we derive conditions for the stability of these patterns and show bifurcation diagrams in two small parameters related to the slope of the external gradient and the ratio of the diffusion coefficients.

2019 ◽  
Vol 84 (4) ◽  
pp. 669-678
Author(s):  
Lennon Ó Náraigh ◽  
Khang Ee Pang

Abstract We develop a mathematical framework for determining the stability of steady states of generic nonlinear reaction–diffusion equations with periodic source terms in one spatial dimension. We formulate an a priori condition for the stability of such steady states, which relies only on the properties of the steady state itself. The mathematical framework is based on Bloch’s theorem and Poincaré’s inequality for mean-zero periodic functions. Our framework can be used for stability analysis to determine the regions in an appropriate parameter space for which steady-state solutions are stable.


2016 ◽  
Vol 26 (08) ◽  
pp. 1650135 ◽  
Author(s):  
C. A. Cardoso ◽  
J. A. Langa ◽  
R. Obaya

In this paper, we describe in detail the global and cocycle attractors related to nonautonomous scalar differential equations with diffusion. In particular, we investigate reaction–diffusion equations with almost-periodic coefficients. The associated semiflows are strongly monotone which allow us to give a full characterization of the cocycle attractor. We prove that, when the upper Lyapunov exponent associated to the linear part of the equations is positive, the flow is persistent in the positive cone, and we study the stability and the set of continuity points of the section of each minimal set in the global attractor for the skew product semiflow. We illustrate our result with some nontrivial examples showing the richness of the dynamics on this attractor, which in some situations shows internal chaotic dynamics in the Li–Yorke sense. We also include the sublinear and concave cases in order to go further in the characterization of the attractors, including, for instance, a nonautonomous version of the Chafee–Infante equation. In this last case we can show exponentially forward attraction to the cocycle (pullback) attractors in the positive cone of solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Santosh Dubey ◽  
S. K. Joshi ◽  
B. S. Tewari

The stability of a binary solid solution under irradiation has been studied. This has been done by performing linear stability analysis of a set of nonlinear reaction-diffusion equations under uniform irradiation. Owing to the complexity of the resulting system of eigenvalue equations, a numerical solution has been attempted to calculate the dispersion relations. The set of reaction-diffusion equations represent the coupled dynamics of vacancies, dumbbell-type interstitials, and lattice atoms. For a miscible system (Cu-Au) under uniform irradiation, the initiation and growth of the instability have been studied as a function of various control parameters.


1995 ◽  
Vol 6 (4) ◽  
pp. 355-372 ◽  
Author(s):  
Jonathan A. Sherratt

Diffusion-driven instability in systems of reaction-diffusion equations is a commonly used model for pattern formation in both embryology and ecology. In ecological applications, model parameters tend to oscillate in time, because of either daily or seasonal fluctuations in the environment. I investigate the effects of such fluctuations on diffusion-driven instability by considering analytically the possibility of Turing bifurcations when the parameter values (diffusion coefficients and kinetic parameters) oscillate in time between two sets of constant values, with a period that is either very short or very long compared to the time scale of the growth and predation kinetics. I show that oscillations in the kinetics can have quite different effects from oscillations in the dispersal terms. I also discuss the comparison between the solution forms predicted by linear theory and the numerical solutions of a simple nonlinear predator-prey model.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Jinhua Huang ◽  
Jiqing Liu ◽  
Guopeng Zhou

This work concerns the stability of impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms as well as Dirichlet boundary condition. By means of Poincaré inequality and Gronwall-Bellman-type impulsive integral inequality, we summarize some new and concise sufficient conditions ensuring the global exponential stability of equilibrium point. The proposed criteria are relevant to the diffusion coefficients and the smallest positive eigenvalue of corresponding Dirichlet Laplacian. In conclusion, two examples are illustrated to demonstrate the effectiveness of our obtained results.


2004 ◽  
Vol 233-234 ◽  
pp. 1-14 ◽  
Author(s):  
A. Benmakhlouf

In this work we develop an analytical method for resolution of the reaction-diffusion equations which govern impurity diffusion by the dissociative mechanism in a finite-thickness sample and from a deposit of solute atoms on the surface. This method is based upon the perturbation of basic solutions corresponding to limiting cases and the choice of suitable small parameters. The solutions obtained and their comparison to those of numerical studies are also presented in this paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Dongfang Li ◽  
Chao Tong ◽  
Jinming Wen

This paper is concerned with the stability of non-Fickian reaction-diffusion equations with a variable delay. It is shown that the perturbation of the energy function of the continuous problems decays exponentially, which provides a more accurate and convenient way to express the rate of decay of energy. Then, we prove that the proposed numerical methods are sufficient to preserve energy stability of the continuous problems. We end the paper with some numerical experiments on a biological model to confirm the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document