Dynamics and Control of a Delayed Oscillator Network by Pinning Strategy

2017 ◽  
Vol 27 (13) ◽  
pp. 1750193 ◽  
Author(s):  
Jing Zhou ◽  
Xu Xu ◽  
Dongyuan Yu ◽  
Wenhao Li

Large scale networks may exhibit complicated dynamical behaviors, such as instability, bifurcation, and chaos. It is not easy to get which nodes or links need to be controlled for ensuring the desired dynamical behavior. This paper presents a detailed analysis on the dynamics and control of a delayed network by a pinning strategy. The network system is first mapped to a simple system by means of an orthogonal transformation. The control signals are then exerted only on a fraction of nodes in the transformed system. We analyze how to get the desired dynamics of the original controlled system (such as zeros solutions, periodic solutions, quasi-periodic solutions and chaos) via controlling the transformed system. It shows that the solutions of the original system can be obtained by the local dynamical behavior exhibiting in the transformed system. The results show that the proposed pinning control strategy is an effective approach for dynamics control.

Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

This book has described a general stability analysis and control design framework for large-scale dynamical systems, with an emphasis on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. The large-scale dynamical systems are composed of interconnected subsystems whose relationships are often circular, giving rise to feedback interconnections. This leads to nonlinear models that can exhibit rich dynamical behavior, such as multiple equilibria, limit cycles, bifurcations, jump resonance phenomena, and chaos. The book concludes by discussing the potential for applying and extending the results across disciplines, such as economic systems, network systems, computer networks, telecommunication systems, power grid systems, and road, rail, air, and space transportation systems.


2016 ◽  
Vol 58 (7) ◽  
pp. 1288-1302 ◽  
Author(s):  
Hai-Quan Li ◽  
Xiao-Feng Liu ◽  
Shao-Jing Guo ◽  
Guo-Ping Cai

Author(s):  
Hartiny Kahar ◽  
Dirk Söffker

Abstract In this paper, the dynamical behavior of a nonlinear mechanical system is considered, namely an inverted flexible pendulum excited in its base by a cart driven by a motor. In this experimental procedure, the chaotic motion of the pendulum tip was identified, in combination with a specific range of parameters. Time-frequency energy analysis is performed to be used for modeling the transition between the equilibria of the chaotic systems. Controlling the chaotic behavior of the system is realized using impulsive control method, where additive impulses are injected into the system, designed with specific impulses energy content at a specific frequency band. The experimental results are presented and discussed in detail, concentrating on how the designed impulses have to be injected to affect the system, specifically the transition between states of equilibria. The results from this experimental modeling procedure show that both additive impulse design and frequency filtering of the injected additive impulses are able to stimulate the equilibrium shift and therefore to control the chaotic behavior of the system.


2020 ◽  
Vol 117 (29) ◽  
pp. 17308-17319 ◽  
Author(s):  
Evan M. Gordon ◽  
Timothy O. Laumann ◽  
Scott Marek ◽  
Ryan V. Raut ◽  
Caterina Gratton ◽  
...  

The human brain is organized into large-scale networks identifiable using resting-state functional connectivity (RSFC). These functional networks correspond with broad cognitive domains; for example, the Default-mode network (DMN) is engaged during internally oriented cognition. However, functional networks may contain hierarchical substructures corresponding with more specific cognitive functions. Here, we used individual-specific precision RSFC to test whether network substructures could be identified in 10 healthy human brains. Across all subjects and networks, individualized network subdivisions were more valid—more internally homogeneous and better matching spatial patterns of task activation—than canonical networks. These measures of validity were maximized at a hierarchical scale that contained ∼83 subnetworks across the brain. At this scale, nine DMN subnetworks exhibited topographical similarity across subjects, suggesting that this approach identifies homologous neurobiological circuits across individuals. Some DMN subnetworks matched known features of brain organization corresponding with cognitive functions. Other subnetworks represented separate streams by which DMN couples with other canonical large-scale networks, including language and control networks. Together, this work provides a detailed organizational framework for studying the DMN in individual humans.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
A. Notué Kadjie ◽  
P. R. Nwagoum Tuwa ◽  
Paul Woafo

The authors numerically investigate the dynamics and control of an electromechanical robot arm consisting of a pendulum coupled to an electrical circuit via an electromagnetic mechanism. The analysis of the dynamical behavior of the electromechanical device powered by a sinusoidal power source is carried out when the effects of the loads on the arm are neglected. It is found that the device exhibits period-n T oscillations and high amplitude oscillations when the electric current is at its smallest value. The specific case which considers the effects of the impulsive contact force caused by an external load mass pushed by the arm is also studied. It is found that the amplitude of the impulse force generates several behaviors such as jump of amplitude and distortions of the mechanical vibration and electrical signal. For more efficient functioning of the device, both piezoelectric and adaptive backstepping controls are applied on the system. It is found that the control strategies are able to mitigate the signal distortion and restore the dynamical behavior to its normal state or reduce the effects of perturbations such as a short time variation of one component or when the robot system is subject to noises.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Fang Qingxiang ◽  
Peng Jigen ◽  
Cao Feilong

The synchronization and control problem of linearly coupled singular systems is investigated. The uncoupled dynamical behavior at each node is general and can be chaotic or, otherwise the coupling matrix is not assumed to be symmetrical. Some sufficient conditions for globally exponential synchronization are derived based on Lyapunov stability theory. These criteria, which are in terms of linear matrix inequality (LMI), indicate that the left and right eigenvectors corresponding to eigenvalue zero of the coupling matrix play key roles in the stability analysis of the synchronization manifold. The controllers are designed for state feedback control and pinning control, respectively. Finally, a numerical example is provided to illustrate the effectiveness of the proposed conditions.


Author(s):  
Weihsueh A. Chiu ◽  
Rebecca Fischer ◽  
Martial L. Ndeffo-Mbah

Abstract Starting in mid-May 2020, many US states began relaxing social distancing measures that were put in place to mitigate the spread of COVID-19. To evaluate the impact of relaxation of restrictions on COVID-19 dynamics and control, we developed a transmission dynamic model and calibrated it to US state-level COVID-19 cases and deaths. We used this model to evaluate the impact of social distancing, testing and contact tracing on the COVID-19 epidemic in each state. As of July 22, 2020, we found only three states were on track to curtail their epidemic curve. Thirty-nine states and the District of Columbia may have to double their testing and/or tracing rates and/or rolling back reopening by 25%, while eight states require an even greater measure of combined testing, tracing, and distancing. Increased testing and contact tracing capacity is paramount for mitigating the recent large-scale increases in U.S. cases and deaths.


Author(s):  
Hartiny A. Kahar ◽  
Elmira Madadi ◽  
Dirk Söffker

Control of flexible systems is effected by design requirements and also manufacturing aspects. The dynamics and control of such systems are challenging, especially in the case of an inverted flexible pendulum system. The experimental study of the dynamical behavior of this kind of system showing jumping phenomenon between three equilibria is not considered in detail in literatures so far. The paper focuses on studying the effects of some parameters to the dynamics of the flexible pendulum. By varying the excitation parameters, control parameters, as well as other distinguished mechanical parameters, different phenomena are observed in experiments discussed in this contribution. In this study, a custom built inverted flexible pendulum on cart system under PID-controlled harmonic excitation is considered. Data are collected from both cart excitation signal and displacement of the pendulum, also to observe their correlation towards jumping behavior. Effects of the variation of the parameters leading to changes in chaotic jumping patterns. Multiple equilibria are observed and analyzed. It can be concluded that depending on the excitation amplitudes, frequencies, and controller parameters, the minimum of two equilibria with an unstable third equilibrium can be detected while jumping phenomena between the equilibria are observed. Questions about the stimulation of the jumping by impulses resulting from imperfect sinusoidal excitation due to control limitations are discussed.


Sign in / Sign up

Export Citation Format

Share Document