scholarly journals INTERACTIONS BETWEEN MODERATELY CLOSE INCLUSIONS FOR THE LAPLACE EQUATION

2009 ◽  
Vol 19 (10) ◽  
pp. 1853-1882 ◽  
Author(s):  
VIRGINIE BONNAILLIE-NOËL ◽  
MARC DAMBRINE ◽  
SÉBASTIEN TORDEUX ◽  
GRÉGORY VIAL

The presence of small inclusions modifies the solution of the Laplace equation posed in a reference domain Ω0. This question has been studied extensively for a single inclusion or well-separated inclusions. In two-dimensional situations, we investigate the case where the distance between the holes tends to zero but remains large with respect to their characteristic size. We first consider two perfectly insulated inclusions. In this configuration we give a complete multiscale asymptotic expansion of the solution to the Laplace equation. We also address the situation of a single inclusion close to a singular perturbation of the boundary ∂Ω0. We also present numerical experiments implementing a multiscale superposition method based on our first order expansion.

2011 ◽  
Vol 21 (11) ◽  
pp. 3181-3194 ◽  
Author(s):  
PEDRO TONIOL CARDIN ◽  
TIAGO DE CARVALHO ◽  
JAUME LLIBRE

We study the bifurcation of limit cycles from the periodic orbits of a two-dimensional (resp. four-dimensional) linear center in ℝn perturbed inside a class of discontinuous piecewise linear differential systems. Our main result shows that at most 1 (resp. 3) limit cycle can bifurcate up to first-order expansion of the displacement function with respect to the small parameter. This upper bound is reached. For proving these results, we use the averaging theory in a form where the differentiability of the system is not needed.


2021 ◽  
Author(s):  
Zakaria Belhachmi ◽  
Amel Ben Abda ◽  
Belhassen Meftahi ◽  
Houcine Meftahi

In this chapter, we consider the optimization problem of a heat distribution on a bounded domain Ω containing a heat source at an unknown location ω⊂Ω. More precisely, we are interested in the best location of ω allowing a suitable thermal environment. For this propose, we consider the minimization of the maximum temperature and its L2 mean oscillations. We extend the notion of topological derivative to the case of local coated perturbation and we perform the asymptotic expansion of the considered shape functionals. In order to reconstruct the location of ω, we propose a one-shot algorithm based on the topological derivative. Finally, we present some numerical experiments in two dimensional case, showing the efficiency of the proposed method.


2019 ◽  
Vol 2019 (1) ◽  
pp. 68-83
Author(s):  
Charyyar Ashyralyyev ◽  
Sedanur Efe

Abstract The purpose of this paper is the construction of second-order of accuracy quadrature formulas for the numerical calculation of the Vekua types two-dimensional potential and singular integral operators in the unit disk of complex plane. We propose quadrature formulas for these integrals which based on first-order spline approximation of two-dimensional function. MATLAB programs are used for numerical experiments in test examples.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Clifford V. Johnson ◽  
Felipe Rosso

Abstract Recent work has shown that certain deformations of the scalar potential in Jackiw-Teitelboim gravity can be written as double-scaled matrix models. However, some of the deformations exhibit an apparent breakdown of unitarity in the form of a negative spectral density at disc order. We show here that the source of the problem is the presence of a multi-valued solution of the leading order matrix model string equation. While for a class of deformations we fix the problem by identifying a first order phase transition, for others we show that the theory is both perturbatively and non-perturbatively inconsistent. Aspects of the phase structure of the deformations are mapped out, using methods known to supply a non-perturbative definition of undeformed JT gravity. Some features are in qualitative agreement with a semi-classical analysis of the phase structure of two-dimensional black holes in these deformed theories.


1990 ◽  
Vol 45 (11-12) ◽  
pp. 1219-1229 ◽  
Author(s):  
D.-A. Becker ◽  
E. W. Richter

AbstractA generalization of the usual method of similarity analysis of differential equations, the method of partially invariant solutions, was introduced by Ovsiannikov. The degree of non-invariance of these solutions is characterized by the defect of invariance d. We develop an algorithm leading to partially invariant solutions of quasilinear systems of first-order partial differential equations. We apply the algorithm to the non-linear equations of the two-dimensional non-stationary ideal MHD with a magnetic field perpendicular to the plane of motion.


1972 ◽  
Vol 39 (3) ◽  
pp. 689-695 ◽  
Author(s):  
W. W. Recker

The two-dimensional equations of magnetoelastodynamics are considered as a symmetric hyperbolic system of linear first-order partial-differential equations in three independent variables. The characteristic properties of the system are determined and a numerical method for obtaining the solution to mixed initial and boundary-value problems in plane magnetoelastodynamics is presented. Results on the von Neumann necessary condition are presented. Application of the method to a problem which has a known solution provides further numerical evidence of the convergence and stability of the method.


Author(s):  
Yuri M. Laevsky ◽  
Tatyana A. Nosova

AbstractA multidimensional model of filtration gas combustion is presented. The model is based on the system of conservation laws of ‘temperature – heat flow’, ‘mass–diffusive flow’ types with introducing the concept of total enthalpy flow. Results of numerical experiments are presented for the one- and two-dimensional problems for different conditions and parameters.


1987 ◽  
Vol 01 (05n06) ◽  
pp. 239-244
Author(s):  
SERGE GALAM

A new mechanism to explain the first order ferroelastic—ferroelectric transition in Terbium Molybdate (TMO) is presented. From group theory analysis it is shown that in the two-dimensional parameter space ordering along either an axis or a diagonal is forbidden. These symmetry-imposed singularities are found to make the unique stable fixed point not accessible for TMO. A continuous transition even if allowed within Landau theory is thus impossible once fluctuations are included. The TMO transition is therefore always first order. This explanation is supported by experimental results.


Sign in / Sign up

Export Citation Format

Share Document