ON THE HIGH ACCURACY NS-ALPHA-DECONVOLUTION TURBULENCE MODEL

2010 ◽  
Vol 20 (04) ◽  
pp. 611-633 ◽  
Author(s):  
LEO G. REBHOLZ ◽  
MYRON M. SUSSMAN

We analyze the mathematical and physical properties of, and present numerical experiments for, the recently proposed NS-α-deconvolution model of fluid turbulence. This family of models has the well-known NS-α model as its zeroth-order model, and applies the Nth van Cittert deconvolution operator to the filtered terms in NS-α to create the Nth-order NS-α-deconvolution model. This model is proposed in Ref. 29, where it is shown to have consistency error O(α2N + 2). Herein we prove that the model admits unique regular solutions, is frame invariant, and improves the consistency error of NS-α from O(α2) to O(α2N + 2) while requiring (N + 1)1/2 times more (typically 1 ≤ N ≤ 5) degrees of freedom for complete resolution. Numerical experiments show that adding approximate deconvolution to NS-α significantly improves accuracy in computations.

2000 ◽  
Vol 42 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Mark Ainsworth ◽  
Bill McLean ◽  
Thanh Tran

AbstractA boundary integral equation of the first kind is discretised using Galerkin's method with piecewise-constant trial functions. We show how the condition number of the stiffness matrix depends on the number of degrees of freedom and on the global mesh ratio. We also show that diagonal scaling eliminates the latter dependence. Numerical experiments confirm the theory, and demonstrate that in practical computations involving strong local mesh refinement, diagonal scaling dramatically improves the conditioning of the Galerkin equations.


Author(s):  
M.-T. Yang ◽  
J. H. Griffin

Reduced order models have been reported in the literature that can be used to predict the harmonic response of mistuned bladed disks. It has been shown that in many cases they exhibit structural fidelity comparable to a finite element analysis of the full bladed disk system while offering a significant improvement in computational efficiency. In these models the blades and disk are treated as distinct substructures. This paper presents a new, simpler approach for developing reduced order models in which the modes of the mistuned system are represented in terms of a sub-set of nominal system modes. It has the following attributes: the input requirements are relatively easy to generate; it accurately predicts mistuning effects in regions where frequency veering occurs; as the number of degrees of freedom increases it converges to the exact solution; it accurately predicts stresses as well as displacements; and it accurately models the deformation and stresses at the blades’ bases.


Author(s):  
Mohammad Javad Doregiraei ◽  
Hossein Moeinkhah ◽  
Jafar Sadeghi

The accurate modeling of electrical impedance over a wide range of frequency is essential for precise dynamic modeling and control problems of Electroactive Polymer (EAP) actuators. Recently, fractional order modeling has attracted more attention due to the high accuracy. This paper deals with a fractional order electrical impedance model and its identification procedure for a class of EAP actuator named Ionic Polymer Metal Composite (IPMC). To take IPMC’s fractional characteristic into account, constant phase element (CPE) is used to construct a model structure according to Electrochemical Impedance Spectroscopy (EIS). By employing the Levy’s method in combination with genetic optimization algorithm, the unknown parameters of the resulting fractional transfer function are identified. Finally the proposed model is verified, by comparing with experimental EIS data. The results show that the fractional order model has high accuracy for representing the electrical impedance of IPMC actuator. The proposed modeling procedure is general and can also be used for any type of EAPs.


Author(s):  
Jun Yu ◽  
Maura Imbimbo ◽  
Raimondo Betti

The common assumption in the so-called linear inverse vibration problem, which provides the mass/stiffness/damping matrices of second order dynamic models, is the availability of a full set of sensors and actuators. In “reduced-order” problems (with limited number of instrumentation), only the components of the eigenvector matrix regarding the measured degrees of freedom can be successfully identified while nothing can be said about the components connected to the unmeasured degrees of freedom. This paper presents a recently developed “reduced-order” model and expands such a model to a “full-order” one that is quite useful in damage detection. The five representative categories of “reduced-order” problems, defined by considering different types of geometrical conditions, are analyzed and a discussion on their solution space has been performed. The effectiveness and robustness of this approach is shown by means of a numerical example.


2015 ◽  
Vol 5 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Guang-Ri Piao ◽  
Hyung-Chun Lee

AbstractA reduced-order model for distributed feedback control of the Benjamin-Bona-Mahony-Burgers (BBMB) equation is discussed. To retain more information in our model, we first calculate the functional gain in the full-order case, and then invoke the proper orthogonal decomposition (POD) method to design a low-order controller and thereby reduce the order of the model. Numerical experiments demonstrate that a solution of the reduced-order model performs well in comparison with a solution for the full-order description.


2016 ◽  
Vol 24 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Michael Hellwig ◽  
Dirk V. Arnold

This paper investigates constraint-handling techniques used in nonelitist single-parent evolution strategies for the problem of maximizing a linear function with a single linear constraint. Two repair mechanisms are considered, and the analytical results are compared to those of earlier repair approaches in the same fitness environment. The first algorithm variant applies reflection to initially infeasible candidate solutions, and the second repair method uses truncation to generate feasible solutions from infeasible ones. The distributions describing the strategies’ one-generation behavior are calculated and used in a zeroth-order model for the steady state attained when operating with fixed step size. Considering cumulative step size adaptation, the qualitative differences in the behavior of the algorithm variants can be explained. The approach extends the theoretical knowledge of constraint-handling methods in the field of evolutionary computation and has implications for the design of constraint-handling techniques in connection with cumulative step size adaptation.


Robotica ◽  
2002 ◽  
Vol 20 (3) ◽  
pp. 341-352 ◽  
Author(s):  
Ph. Drouet ◽  
S. Dubowsky ◽  
S. Zeghloul ◽  
C. Mavroidis

A method is presented that compensates for manipulator end-point errors in order to achieve very high position accuracy. The measured end-point error is decomposed into generalized geometric and elastic error parameters that are used in an analytical model to calibrate the system as a function of its configuration and the task loads, including any payload weight. The method exploits the fundamental mechanics of serial manipulators to yield a non-iterative compensation process that only requires the identification of parameters that are function only of one variable. The resulting method is computationally simple and requires far less measured data than might be expected. The method is applied to a six degrees-of-freedom (DOF) medical robot that positions patients for cancer proton therapy to enable it to achieve very high accuracy. Experimental results show the effectiveness of the method.


2005 ◽  
Author(s):  
Shyam Venugopal ◽  
Lun-Chen Hsu ◽  
Smitha Malalur-Nagaraja-Rao ◽  
B. P. Wang ◽  
Mu Chiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document