A NEW ENSEMBLE LEARNING ALGORITHM USING REGIONAL CLASSIFIERS

2013 ◽  
Vol 22 (04) ◽  
pp. 1350025 ◽  
Author(s):  
BYUNGWOO LEE ◽  
SUNGHA CHOI ◽  
BYONGHWA OH ◽  
JIHOON YANG ◽  
SUNGYONG PARK

We present a new ensemble learning method that employs a set of regional classifiers, each of which learns to handle a subset of the training data. We split the training data and generate classifiers for different regions in the feature space. When classifying an instance, we apply a weighted voting scheme among the classifiers that include the instance in their region. We used 11 datasets to compare the performance of our new ensemble method with that of single classifiers as well as other ensemble methods such as RBE, bagging and Adaboost. As a result, we found that the performance of our method is comparable to that of Adaboost and bagging when the base learner is C4.5. In the remaining cases, our method outperformed other approaches.

2019 ◽  
Vol 9 (22) ◽  
pp. 4749
Author(s):  
Lingyun Jiang ◽  
Kai Qiao ◽  
Linyuan Wang ◽  
Chi Zhang ◽  
Jian Chen ◽  
...  

Decoding human brain activities, especially reconstructing human visual stimuli via functional magnetic resonance imaging (fMRI), has gained increasing attention in recent years. However, the high dimensionality and small quantity of fMRI data impose restrictions on satisfactory reconstruction, especially for the reconstruction method with deep learning requiring huge amounts of labelled samples. When compared with the deep learning method, humans can recognize a new image because our human visual system is naturally capable of extracting features from any object and comparing them. Inspired by this visual mechanism, we introduced the mechanism of comparison into deep learning method to realize better visual reconstruction by making full use of each sample and the relationship of the sample pair by learning to compare. In this way, we proposed a Siamese reconstruction network (SRN) method. By using the SRN, we improved upon the satisfying results on two fMRI recording datasets, providing 72.5% accuracy on the digit dataset and 44.6% accuracy on the character dataset. Essentially, this manner can increase the training data about from n samples to 2n sample pairs, which takes full advantage of the limited quantity of training samples. The SRN learns to converge sample pairs of the same class or disperse sample pairs of different class in feature space.


2021 ◽  
Author(s):  
Yu Tang ◽  
Qi Dai ◽  
Mengyuan Yang ◽  
Lifang Chen

Abstract For the traditional ensemble learning algorithm of software defect prediction, the base predictor exists the problem that too many parameters are difficult to optimize, resulting in the optimized performance of the model unable to be obtained. An ensemble learning algorithm for software defect prediction that is proposed by using the improved sparrow search algorithm to optimize the extreme learning machine, which divided into three parts. Firstly, the improved sparrow search algorithm (ISSA) is proposed to improve the optimization ability and convergence speed, and the performance of the improved sparrow search algorithm is tested by using eight benchmark test functions. Secondly, ISSA is used to optimize extreme learning machine (ISSA-ELM) to improve the prediction ability. Finally, the optimized ensemble learning algorithm (ISSA-ELM-Bagging) is presented in the Bagging algorithm which improve the prediction performance of ELM in software defect datasets. Experiments are carried out in six groups of software defect datasets. The experimental results show that ISSA-ELM-Bagging ensemble learning algorithm is significantly better than the other four comparison algorithms under the six evaluation indexes of Precision, Recall, F-measure, MCC, Accuracy and G-mean, which has better stability and generalization ability.


2019 ◽  
Vol 23 (1) ◽  
pp. 395-406 ◽  
Author(s):  
Yanyun Tao ◽  
Yenming J. Chen ◽  
Xiangyu Fu ◽  
Bin Jiang ◽  
Yuzhen Zhang

2018 ◽  
Vol 173 ◽  
pp. 03004
Author(s):  
Gui-fang Shen ◽  
Yi-Wen Zhang

To improve the accuracy of the financial early warning of the company, aiming at defects of slow learning speed, trapped in local solution and inaccurate operating result of the traditional BP neural network with random initial weights and thresholds, a parallel ensemble learning algorithm based on improved harmony search algorithm using good point set (GIHS) optimize the BP_Adaboost is proposed. Firstly, the good-point set is used to construct a more high quality initial harmony library, and it adjusts the parameters dynamically during the search process and generates several solutions in each iteration so as to make full use of information of harmony memory to improve the global search ability and convergence speed of algorithm. Secondly, ten financial indicators are chosen as the inputs of BP neural network value, and GIHS algorithm and BP neural network are combined to construct the parallel ensemble learning algorithm to optimize BP neural network initial weights value and output threshold value. Finally, many of these weak classifier is composed as strong classifier through the AdaBoost algorithm. The improved algorithm is validated in the company's financial early warning. Simulation results show that the performance of GIHS algorithm is better than the basic HS and IHS algorithm, and the GIHS-BP_AdaBoost classifier has higher classification and prediction accuracy.


2019 ◽  
Vol 9 (15) ◽  
pp. 3143 ◽  
Author(s):  
Lu Han ◽  
Chongchong Yu ◽  
Cuiling Liu ◽  
Yong Qin ◽  
Shijie Cui

The rolling bearing is a key component of the bogie of the rail train. The working environment is complex, and it is easy to cause cracks and other faults. Effective rolling bearing fault diagnosis can provide an important guarantee for the safe operation of the track while improving the resource utilization of the rolling bearing and greatly reducing the cost of operation. Aiming at the problem that the characteristics of the vibration data of the rolling bearing components of the railway train and the vibration mechanism model are difficult to establish, a method for long-term faults diagnosis of the rolling bearing of rail trains based on Exponential Smoothing Predictive Segmentation and Improved Ensemble Learning Algorithm is proposed. Firstly, the sliding time window segmentation algorithm of exponential smoothing is used to segment the rolling bearing vibration data, and then the segmentation points are used to construct the localized features of the data. Finally, an Improved AdaBoost Algorithm (IAA) is proposed to enhance the anti-noise ability. IAA, Back Propagation (BP) neural network, Support Vector Machine (SVM), and AdaBoost are used to classify the same dataset, and the evaluation indexes show that the IAA has the best classification effect. The article selects the raw data of the bearing experiment platform provided by the State Key Laboratory of Rail Traffic Control and Safety of Beijing Jiaotong University and the standard dataset of the American Case Western Reserve University for the experiment. Theoretical analysis and experimental results show the effectiveness and practicability of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document