scholarly journals ON THE WIDTH OF THE LAST SCATTERING SURFACE

2004 ◽  
Vol 13 (07) ◽  
pp. 1425-1429
Author(s):  
NILZA PIRES ◽  
MARIA ASSUNTA S. NOBRE ◽  
JOSÉ A. S. LIMA

We discuss the physical effects of some accelerated world models on the width of the last scattering surface (LSS) of the cosmic microwave background radiation (CMBR). The models considered in our analysis are X-matter (XCDM) and a Chaplygin type gas. The redshift of the LSS does not depend on the kind of dark energy (if XCDM of Chaplygin). Further, for a Chaplygin gas, the width of the LSS is also only weakly dependent on the kind of scenario (if we have dark energy plus cold dark matter or the unified picture).

1990 ◽  
Vol 124 ◽  
pp. 645-649
Author(s):  
Tetsuya Hara ◽  
Shigeru Miyoshi

It has been reported that galaxies in large regions (~102Mpc), including some clusters of galaxies, may be streaming coherently with velocities up to 600km/sec or more with respect to the rest frame determined by the microwave background radiation.) On the other hand, it is suggested that the dominant mass component of the universe is dark matter. Because we can only speculate the motion of dark matter from the galaxy motions, much attention should be paid to the correlation of velocities between the observed galaxies and cold dark matter. So we investigate whether such coherent large-scale streaming velocities are due to dark matter or only to baryonic objects which may be formed by piling up of gases due to some explosive events.


Author(s):  
Geoff Cottrell

The last seven decades have seen telescopes launched into space, vastly enhancing the crispness of the images they produce and expanding the range of observable wavelengths to include UV, X- and gamma-ray wavelengths. ‘Space telescopes’ shows how the information gleaned from them has enabled us to make new discoveries and form much more complete astrophysical models. It documents the development of space telescopes—including the Hubble Space Telescope—and highlights key discoveries, such as cosmic microwave background radiation, the results of which have profound implications for cosmology. The Standard Cosmological Model is known as ‘lambda cold dark matter’, containing three main ingredients: baryonic matter, cold dark matter (the unknown form of gravitating matter), and the mysterious dark energy.


2001 ◽  
Vol 16 (supp01c) ◽  
pp. 1031-1033 ◽  
Author(s):  
STACY MCGAUGH

The amplitude of the second peak in the angular spectrum of the cosmic microwave background radiation is constrained to be small by recent experiments like Boomerang. This is surprising in the context of the ΛCDM model, which predicted a large second peak. However, this result is expected if CDM does not exist. The observed shape of the power spectrum was accurately predicted (before the fact) by a model motivated by the surprising recent successes of the modified dynamics (MOND) hypothesized by Milgrom.


2017 ◽  
Vol 26 (13) ◽  
pp. 1730023 ◽  
Author(s):  
G. K. Chakravarty ◽  
S. Mohanty ◽  
G. Lambiase

Cosmological and astrophysical observations lead to the emerging picture of a universe that is spatially flat and presently undertaking an accelerated expansion. The observations supporting this picture come from a range of measurements encompassing estimates of galaxy cluster masses, the Hubble diagram derived from type-Ia supernovae observations, the measurements of Cosmic Microwave Background radiation anisotropies, etc. The present accelerated expansion of the universe can be explained by admitting the existence of a cosmic fluid, with negative pressure. In the simplest scenario, this unknown component of the universe, the Dark Energy, is represented by the cosmological constant ([Formula: see text]), and accounts for about 70% of the global energy budget of the universe. The remaining 30% consist of a small fraction of baryons (4%) with the rest being Cold Dark Matter (CDM). The Lambda Cold Dark Matter ([Formula: see text]CDM) model, i.e. General Relativity with cosmological constant, is in good agreement with observations. It can be assumed as the first step towards a new standard cosmological model. However, despite the satisfying agreement with observations, the [Formula: see text]CDM model presents lack of congruence and shortcomings and therefore theories beyond Einstein’s General Relativity are called for. Many extensions of Einstein’s theory of gravity have been studied and proposed with various motivations like the quest for a quantum theory of gravity to extensions of anomalies in observations at the solar system, galactic and cosmological scales. These extensions include adding higher powers of Ricci curvature [Formula: see text], coupling the Ricci curvature with scalar fields and generalized functions of [Formula: see text]. In addition, when viewed from the perspective of Supergravity (SUGRA), many of these theories may originate from the same SUGRA theory, but interpreted in different frames. SUGRA therefore serves as a good framework for organizing and generalizing theories of gravity beyond General Relativity. All these theories when applied to inflation (a rapid expansion of early universe in which primordial gravitational waves might be generated and might still be detectable by the imprint they left or by the ripples that persist today) can have distinct signatures in the Cosmic Microwave Background radiation temperature and polarization anisotropies. We give a review of [Formula: see text]CDM cosmology and survey the theories of gravity beyond Einstein’s General Relativity, specially which arise from SUGRA, and study the consequences of these theories in the context of inflation and put bounds on the theories and the parameters therein from the observational experiments like PLANCK, Keck/BICEP, etc. The possibility of testing these theories in the near future in CMB observations and new data coming from colliders like the LHC, provides an unique opportunity for constructing verifiable models of particle physics and General Relativity.


1997 ◽  
Vol 07 (08) ◽  
pp. 1847-1853 ◽  
Author(s):  
Roman Tomaschitz

An elementary account on the chaoticity of galactic world-lines in an open universe is given. A new type of cosmic evolution by global metrical deformations, unpredicted by Einstein's equations, is pointed out. Physical effects of this evolution are backscattering of electromagnetic fields and particle creation in quantum fields. We review in an untechnical way how global metrical deformations of the open and multiply connected spacelike slices induce angular fluctuations in the temperature of the cosmic microwave background radiation.


2007 ◽  
Vol 04 (02) ◽  
pp. 313-323 ◽  
Author(s):  
MAREK SZYDLOWSKI ◽  
ALEKSANDRA KUREK

We characterize a class of simple FRW models filled by both dark energy and dark matter in notion of a single potential function of the scale factor a(t); t is the cosmological time. It represents the potential of a fictitious particle — Universe moving in 1-dimensional well V(a) which the positional variable mimics the evolution of the Universe. Then the class of all dark energy models (called a multiverse) can be regarded as a Banach space naturally equipped in the structure of the Sobolev metric. In this paper, we explore the notion of C1 metric introduced in the multiverse which measures distance between any two dark energy models. If we choose cold dark matter as a reference, then we can find how far apart are different models offering explanation of the present accelerating expansion phase of the Universe. We consider both models with dark energy (models with the generalized Chaplygin gas, models with variable coefficient equation of state [Formula: see text] parameterized by redshift z, models with phantom matter) as well as models based on some modification of Friedmann equation (Cardassian models, Dvali–Gabadadze–Porrati brane models). We argue that because observational data still favor the ΛCDM model, all reasonable dark energy models should belong to the nearby neighborhood of this model.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Paul Gorenstein ◽  
Wallace Tucker

Several independent astronomical observations in different wavelength bands reveal the existence of much larger quantities of matter than what we would deduce from assuming a solar mass to light ratio. They are very high velocities of individual galaxies within clusters of galaxies, higher than expected rotation rates of stars in the outer regions of galaxies, 21 cm line studies indicative of increasing mass to light ratios with radius in the halos of spiral galaxies, hot gaseous X-ray emitting halos around many elliptical galaxies, and clusters of galaxies requiring a much larger component of unseen mass for the hot gas to be bound. The level of gravitational attraction needed for the spatial distribution of galaxies to evolve from the small perturbations implied by the very slightly anisotropic cosmic microwave background radiation to its current web-like configuration requires much more mass than is observed across the entire electromagnetic spectrum. Distorted shapes of galaxies and other features created by gravitational lensing in the images of many astronomical objects require an amount of dark matter consistent with other estimates. The unambiguous detection of dark matter and more recently evidence for dark energy has positioned astronomy at the frontier of fundamental physics as it was in the 17th century.


Sign in / Sign up

Export Citation Format

Share Document