scholarly journals Solutions with throats in Hořava gravity with cosmological constant

2016 ◽  
Vol 25 (02) ◽  
pp. 1650016 ◽  
Author(s):  
Jorge Bellorín ◽  
Alvaro Restuccia ◽  
Adrián Sotomayor

By combining analytical and numerical methods, we find that the solutions of the complete Hořava theory with negative cosmological constant that satisfy the conditions of staticity, spherical symmetry and vanishing of the shift function are two kinds of geometry: (i) a solution with two sides joined by a throat and (ii) a single side with a naked singularity at the origin. We study the second-order effective action. We consider the case when the coupling constant of the [Formula: see text] term, which is the unique deviation from general relativity (GR) in the effective action, is small. At one side, the solution with the throat acquires a kind of deformed anti-de Sitter (AdS) asymptotia and at the other side, there is an asymptotic essential singularity. The deformation of AdS essentially means that the lapse function [Formula: see text] diverges asymptotically a bit faster than AdS. This can also be interpreted as an anisotropic Lifshitz scaling that the solutions acquire asymptotically.

2020 ◽  
Vol 29 (05) ◽  
pp. 2050032
Author(s):  
Shuang Yu ◽  
Changjun Gao

We construct exact black hole solutions to Einstein gravity with nonlinear electrodynamic field. In these solutions, there are, in general, four parameters. They are physical mass, electric charge, cosmological constant and the coupling constant. These solutions differ significantly from the Reissner–Nordström–de Sitter solution in Einstein–Maxwell gravity with a cosmological constant, due to the presence of coupling constant. For example, some of them are endowed with a topological defect on angle [Formula: see text] and the electric charge of some can be much larger or smaller than their mass by varying the coupling constant. On the other hand, these spacetimes are all asymptotically de Sitter (or anti-de Sitter). As a result, their causal structure is similar to the Reissner–Nordström–de Sitter spacetime. Finally, the investigations on the thermodynamics reveal that the coupling constant except for solution-4 has the opposite effect as temperature on the phase, structure of black holes. Concretely, the phase-space changes from single phase to three phases with the decrease of temperature. On the contrary, it changes from three phases to a single phase with the decrease of coupling constant.


Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 36 ◽  
Author(s):  
Valerio Faraoni

Fields of spin s ≥ 1 / 2 satisfying wave equations in a curved space obey the Huygens principle under certain conditions clarified by a known theorem. Here, this theorem is generalized to spin zero and applied to an inflaton field in de Sitter-like space, showing that tails of scalar radiation are an unavoidable physical feature. Requiring the absence of tails, on the contrary, necessarily implies an unnatural tuning between cosmological constant, scalar field mass, and coupling constant to the curvature.


2005 ◽  
Vol 20 (08) ◽  
pp. 561-575 ◽  
Author(s):  
ZDENĚK STUCHLÍK

Surprisingly, the relict cosmological constant has a crucial influence on properties of accretion discs orbiting black holes in quasars and active galactic nuclei. We show it by considering basic properties of both the geometrically thin and thick accretion discs in the Kerr–de Sitter black hole (naked-singularity) spacetimes. Both thin and thick discs must have an outer edge allowing outflow of matter into the outer space, located nearby the so-called static radius, where the gravitational attraction of a black hole is balanced by the cosmological repulsion. Jets produced by thick discs can be significantly collimated after crossing the static radius. Extension of discs in quasars is comparable with extension of the associated galaxies, indicating a possibility that the relict cosmological constant puts an upper limit on extension of galaxies.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Pengfei Zhang

Abstract In this work, we study a generalization of the coupled Sachdev-Ye-Kitaev (SYK) model with U(1) charge conservations. The model contains two copies of the complex SYK model at different chemical potentials, coupled by a direct hopping term. In the zero-temperature and small coupling limit with small averaged chemical potential, the ground state is an eternal wormhole connecting two sides, with a specific charge Q = 0, which is equivalent to a thermofield double state. We derive the conformal Green’s functions and determine corresponding IR parameters. At higher chemical potential, the system transit into the black hole phase. We further derive the Schwarzian effective action and study its quench dynamics. Finally, we compare numerical results with the analytical predictions.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Mehrdad Mirbabayi

Abstract We propose a Euclidean preparation of an asymptotically AdS2 spacetime that contains an inflating dS2 bubble. The setup can be embedded in a four dimensional theory with a Minkowski vacuum and a false vacuum. AdS2 approximates the near horizon geometry of a two-sided near-extremal Reissner-Nordström black hole, and the two sides can connect to the same Minkowski asymptotics to form a topologically nontrivial worm- hole geometry. Likewise, in the false vacuum the near-horizon geometry of near-extremal black holes is approximately dS2 times 2-sphere. We interpret the Euclidean solution as describing the decay of an excitation inside the wormhole to a false vacuum bubble. The result is an inflating region inside a non-traversable asymptotically Minkowski wormhole.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
I. L. Buchbinder ◽  
E. A. Ivanov ◽  
B. S. Merzlikin ◽  
K. V. Stepanyantz

Abstract We apply the harmonic superspace approach for calculating the divergent part of the one-loop effective action of renormalizable 6D, $$ \mathcal{N} $$ N = (1, 0) supersymmetric higher-derivative gauge theory with a dimensionless coupling constant. Our consideration uses the background superfield method allowing to carry out the analysis of the effective action in a manifestly gauge covariant and $$ \mathcal{N} $$ N = (1, 0) supersymmetric way. We exploit the regularization by dimensional reduction, in which the divergences are absorbed into a renormalization of the coupling constant. Having the expression for the one-loop divergences, we calculate the relevant β-function. Its sign is specified by the overall sign of the classical action which in higher-derivative theories is not fixed a priori. The result agrees with the earlier calculations in the component approach. The superfield calculation is simpler and provides possibilities for various generalizations.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Andreas Karch ◽  
Lisa Randall

Abstract We study Randall-Sundrum two brane setups with mismatched brane tensions. For the vacuum solutions, boundary conditions demand that the induced metric on each of the branes is either de Sitter, Anti-de Sitter, or Minkowski. For incompatible boundary conditions, the bulk metric is necessarily time-dependent. This introduces a new class of time-dependent solutions with the potential to address cosmological issues and provide alternatives to conventional inflationary (or contracting) scenarios. We take a first step in this paper toward such solutions. One important finding is that the resulting solutions can be very succinctly described in terms of an effective action involving only the induced metric on either one of the branes and the radion field. But the full geometry cannot necessarily be simply described with a single coordinate patch. We concentrate here on the time- dependent solutions but argue that supplemented with a brane stabilization mechanism one can potentially construct interesting cosmological models this way. This is true both with and without a brane stabilization mechanism.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Ivano Basile ◽  
Stefano Lanza

Abstract We study de Sitter configurations in ten-dimensional string models where supersymmetry is either absent or broken at the string scale. To this end, we derive expressions for the cosmological constant in general warped flux compactifications with localized sources, which yield no-go theorems that extend previous works on supersymmetric cases. We frame our results within a dimensional reduction and connect them to a number of Swampland conjectures, corroborating them further in the absence of supersymmetry. Furthermore, we construct a top-down string embedding of de Sitter brane-world cosmologies within unstable anti-de Sitter landscapes, providing a concrete realization of a recently revisited proposal.


2018 ◽  
Vol 27 (04) ◽  
pp. 1850046 ◽  
Author(s):  
Xiaokai He ◽  
Jiliang Jing ◽  
Zhoujian Cao

Gravitational radiation plays an important role in astrophysics. Based on the fact that our universe is expanding, the gravitational radiation when a positive cosmological constant is presented has been studied along with two different ways recently, one is the Bondi–Sachs (BS) framework in which the result is shown by BS quantities in the asymptotic null structure, the other is the perturbation approach in which the result is presented by the quadrupoles of source. Therefore, it is worth to interpret the quantities in asymptotic null structure in terms of the information of the source. In this paper, we investigate this problem and find the explicit expressions of BS quantities in terms of the quadrupoles of source in asymptotically de Sitter spacetime. We also estimate how far away the source is, the cosmological constant may affect the detection of the gravitational wave.


Sign in / Sign up

Export Citation Format

Share Document