scholarly journals POLYTROPIC AND CHAPLYGIN f(R)-GRAVITY MODELS

2012 ◽  
Vol 21 (12) ◽  
pp. 1250083 ◽  
Author(s):  
K. KARAMI ◽  
M. S. KHALEDIAN

We reconstruct different f(R)-gravity models corresponding to the polytropic, standard Chaplygin, generalized Chaplygin, modified Chaplygin and modified variable Chaplygin gas dark energy (DE) models. We also obtain the equation of state (EoS) parameters of the corresponding f(R)-gravity models which describe the accelerated expansion of the universe. We conclude that although the EoS parameters of the obtained f(R)-gravities can behave like phantom or quintessence DE models, they cannot justify the transition from the quintessence state to the phantom regime. Furthermore, the polytropic and Chaplygin f(R)-gravity models in de Sitter space can satisfy the inflation condition.

2014 ◽  
Vol 29 (02) ◽  
pp. 1450015 ◽  
Author(s):  
M. SHARIF ◽  
SHAMAILA RANI

This paper is devoted to study the power-law entropy corrected holographic dark energy (ECHDE) model in the framework of f(T) gravity. We assume infrared (IR) cutoff in terms of Granda–Oliveros (GO) length and discuss the constructed f(T) model in interacting as well as in non-interacting scenarios. We explore some cosmological parameters like equation of state (EoS), deceleration, statefinder parameters as well as ωT–ωT′ analysis. The EoS and deceleration parameters indicate phantom behavior of the accelerated expansion of the universe. It is mentioned here that statefinder trajectories represent consistent results with ΛCDM limit, while evolution trajectory of ωT–ωT′ phase plane does not approach to ΛCDM limit for both interacting and non-interacting cases.


2016 ◽  
Vol 25 (02) ◽  
pp. 1650025 ◽  
Author(s):  
Giovanni Otalora

Although equivalent to general relativity, teleparallel gravity (TG) is conceptually speaking a completely different theory. In this theory, the gravitational field is described by torsion, not by curvature. By working in this context, a new model is proposed in which the four-derivative of a canonical scalar field representing dark energy is nonminimally coupled to the “vector torsion”. This type of coupling is motivated by the fact that a scalar field couples to torsion through its four-derivative, which is consistent with local spacetime kinematics regulated by the de Sitter group [Formula: see text]. It is found that the current state of accelerated expansion of the universe corresponds to a late-time attractor that can be (i) a dark energy-dominated de Sitter solution ([Formula: see text]), (ii) a quintessence-type solution with [Formula: see text], or (iii) a phantom-type [Formula: see text] dark energy.


2008 ◽  
Vol 17 (03n04) ◽  
pp. 651-658 ◽  
Author(s):  
WINFRIED ZIMDAHL

Different models of the cosmic substratum which pretend to describe the present stage of accelerated expansion of the Universe, like the ΛCDM model or the Chaplygin gas, can be seen as special realizations of a holographic dark energy cosmology if the option of an interaction between pressureless dark matter and dark energy is taken seriously. The corresponding interaction strength parameter plays the role of a cosmological constant. Differences occur at the perturbative level. In particular, the pressure perturbations are intrinsically nonadiabatic.


2005 ◽  
Vol 14 (05) ◽  
pp. 883-891 ◽  
Author(s):  
LIXIN XU ◽  
HONGYA LIU

We consider a five-dimensional Ricci flat Bouncing cosmology and assume that the four-dimensional universe is permeated smoothly by three minimally coupled matter components: CDM + baryons ρm, radiation ρr and dark energy ρx. Evolutions of these three components are studied and it is found that dark energy dominates before the bounce, and pulls the universe contracting. In this process, dark energy decreases while radiation and the matter increases. After the bounce, the radiation and matter dominates alternatively and then decreases with the expansion of the universe. At present, the dark energy dominates again and pushes the universe accelerating. In this model, we also obtain that the equation of state (EOS) of dark energy at present time is wx0≈-1.05 and the redshift of the transition from decelerated expansion to accelerated expansion is zT≈0.37, which are compatible with the current observations.


2012 ◽  
Vol 21 (05) ◽  
pp. 1250046 ◽  
Author(s):  
M. SHARIF ◽  
RABIA SALEEM

In this paper, we investigate the statefinder, the deceleration and equation of state parameters when universe is composed of generalized holographic dark energy or generalized Ricci dark energy for Bianchi I universe model. These parameters are found for both interacting as well as noninteracting scenarios of generalized holographic or generalized Ricci dark energy with dark matter and generalized Chaplygin gas. We explore these parameters graphically for different situations. It is concluded that these models represent accelerated expansion of the universe.


2012 ◽  
Vol 27 (18) ◽  
pp. 1250100 ◽  
Author(s):  
A. KHODAM-MOHAMMADI ◽  
M. MALEKJANI ◽  
M. MONSHIZADEH

In this work, we reconstruct the f(R) modified gravity for different ghost and generalized-ghost dark energy (DE) models in FRW flat universe, which describes the accelerated expansion of the universe. The equation of state and deceleration parameter of reconstructed f(R) gravity have been calculated. The equation of state and deceleration parameter of reconstructed f(R)-ghost/generalized-ghost DE, have been calculated. We show that the corresponding f(R) gravity of ghost/generalized-ghost DE model can behave like phantom or quintessence. Also the transition between deceleration to acceleration regime is indicated by deceleration parameter diagram for reconstructed f(R) generalized-ghost DE model.


2020 ◽  
Vol 35 (16) ◽  
pp. 2050128
Author(s):  
Koijam Manihar Singh ◽  
K. L. Mahanta ◽  
Longjam Parbati Devi ◽  
R. R. Sahoo

In the course of study of the evolution of the universe, it is seen that perhaps the extra energy generated and particles created due to the accelerated expansion of the universe might be absorbed by the dark energy and dark matter which are already existing in this universe. It is found that the energy density of dark energy can be expressed as a function of the energy density of the remaining matter portion of the universe which shows that the different components of the universe are correlated. According to the forms of the different types of interaction occurring between dark energy and the other different contents of the universe it may be possible to utilize the dark energy in different ways as it may take different forms of energy. As an interesting phenomenon, it is also observed that the concept of negative time may exist in this universe, and it may revolutionize some of the original concepts of nature and the physical world.


2019 ◽  
Vol 28 (02) ◽  
pp. 1950031
Author(s):  
Rui-Hui Lin ◽  
Qiang Wen ◽  
Xiang-Hua Zhai ◽  
Xin-Zhou Li

The currently accelerated expansion of our universe is unarguably one of the most intriguing problems in today’s physics research. Two realistic nonminimal torsion–matter coupling [Formula: see text] models have been established and studied in our previous papers [C. J. Feng, F. F. Ge, X. Z. Li, R. H. Lin and X. H. Zhai, Phys. Rev. D 92 (2015) 104038; R. H. Lin, X. H. Zhai and X. Z. Li, Eur. Phys. J. C 77 (2017) 504] aiming to explain this “dark energy” problem. In this paper, we study the generalized power-law torsion–matter coupling [Formula: see text] model. Dynamical system analysis shows that the three expansion phases of the universe, i.e. the radiation-dominated era, the matter-dominated era and the dark energy-dominated era, can all be reproduced in this generalized model. By using the statefinder and [Formula: see text] diagnostics, we find that the different cases of the model can be distinguished from each other and from other dark energy models such as the two models in our previous papers, [Formula: see text]CDM, quintessence and Chaplygin gas. Furthermore, the analyses also show that all kinds of generalized power-law torsion–matter coupling model are able to cross the [Formula: see text] divide from below to above, which is a realization of quintom scenario. The decrease of the energy density resulting from the crossing of [Formula: see text] will make the catastrophic fate of the universe avoided and a de Sitter expansion fate in the future will be approached.


Author(s):  
Michael Kachelriess

The contribution of vacuum fluctuations to the cosmological constant is reconsidered studying the dependence on the used regularisation scheme. Then alternative explanations for the observed accelerated expansion of the universe in the present epoch are introduced which either modify gravity or add a new component of matter, dubbed dark energy. The chapter closes with some comments on attempts to quantise gravity.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 163
Author(s):  
Verónica Motta ◽  
Miguel A. García-Aspeitia ◽  
Alberto Hernández-Almada ◽  
Juan Magaña ◽  
Tomás Verdugo

The accelerated expansion of the Universe is one of the main discoveries of the past decades, indicating the presence of an unknown component: the dark energy. Evidence of its presence is being gathered by a succession of observational experiments with increasing precision in its measurements. However, the most accepted model for explaining the dynamic of our Universe, the so-called Lambda cold dark matter, faces several problems related to the nature of such energy component. This has led to a growing exploration of alternative models attempting to solve those drawbacks. In this review, we briefly summarize the characteristics of a (non-exhaustive) list of dark energy models as well as some of the most used cosmological samples. Next, we discuss how to constrain each model’s parameters using observational data. Finally, we summarize the status of dark energy modeling.


Sign in / Sign up

Export Citation Format

Share Document