scholarly journals A quantum theory of spacetime in spinor formalism and the physical reality of cross-ratio representation: the equation of density parameters of dark energy, matter, and ordinary matter is derived: ΩM2 = 4 Ωb ΩΛ

Author(s):  
Jackie Liu

ABSTRACT By theorizing the physical reality through the deformation of an arbitrary cross-ratio, we leverage Galois differential theory to describe the dynamics of isomonodromic integratable system. We found a new description of curvature of spacetime by the equivalency of isomonodromic integratable system and Penrose’s spinor formalism of general relativity. Using such description, we hypothetically quantize the curvature of spacetime (gravity) and apply to the problem of the evolution of the universe. The Friedmann equation is recovered and compared so that the mathematical relationship among dark energy, matter (dark matter + ordinary matter), and ordinary matter, ΩM2≃4ΩbΩΛ, is derived; the actual observed results are compared to this equation (calculated ΩM = 0.33 vs. observed ΩM = 0.31); the model might explain the origin of dark energy and dark matter of the evolution of the universe.

2019 ◽  
Vol 34 (19) ◽  
pp. 1950099 ◽  
Author(s):  
Denitsa Staicova ◽  
Michail Stoilov

We consider the cosmological application of a (variant of) relatively newly proposed model1 unifying inflation, dark energy, dark matter, and the Higgs mechanism. The model was originally defined using additional non-Riemannian measures, but it can be reformulated into effective quintessential model unifying inflation, dark energy and dark matter. Here, we demonstrate numerically that it is capable of describing the entire evolution of the Universe in a seamless way, but this requires some revision of the model setup. The main reason is that there is a strong effective friction in the model, a feature which has been neglected in the pioneer work. This improves the model potential for proper description of the evolution of the Universe, because the friction ensures a finite time inflation with dynamically maintained low-value slow-roll parameters in the realistic scenarios. In addition, the model predicts the existence of a constant scalar field in late Universe.


2014 ◽  
Vol 11 (02) ◽  
pp. 1460014 ◽  
Author(s):  
Winfried Zimdahl

Interactions inside the cosmological dark sector influence the cosmological dynamics. As a consequence, the future evolution of the Universe may be different from that predicted by the ΛCDM model. We review main features of several recently studied models with nongravitational couplings between dark matter and dark energy.


2007 ◽  
Vol 04 (02) ◽  
pp. 313-323 ◽  
Author(s):  
MAREK SZYDLOWSKI ◽  
ALEKSANDRA KUREK

We characterize a class of simple FRW models filled by both dark energy and dark matter in notion of a single potential function of the scale factor a(t); t is the cosmological time. It represents the potential of a fictitious particle — Universe moving in 1-dimensional well V(a) which the positional variable mimics the evolution of the Universe. Then the class of all dark energy models (called a multiverse) can be regarded as a Banach space naturally equipped in the structure of the Sobolev metric. In this paper, we explore the notion of C1 metric introduced in the multiverse which measures distance between any two dark energy models. If we choose cold dark matter as a reference, then we can find how far apart are different models offering explanation of the present accelerating expansion phase of the Universe. We consider both models with dark energy (models with the generalized Chaplygin gas, models with variable coefficient equation of state [Formula: see text] parameterized by redshift z, models with phantom matter) as well as models based on some modification of Friedmann equation (Cardassian models, Dvali–Gabadadze–Porrati brane models). We argue that because observational data still favor the ΛCDM model, all reasonable dark energy models should belong to the nearby neighborhood of this model.


2005 ◽  
Vol 20 (19) ◽  
pp. 1443-1449 ◽  
Author(s):  
WEI WANG ◽  
YUANXING GUI ◽  
SUHONG ZHANG ◽  
GUANGHAI GUO ◽  
YING SHAO

We assume that dark matter and dark energy satisfy the unified equation of state: p = B(z)ρ, with p = pdE, ρ = ρdm+ρdE, where the pressure of dark matter pdm = 0 has been taken into account. A special function [Formula: see text] is presented, which can well describe the evolution of the universe. In this model, the universe will end up with a Big Rip. By further simple analysis, we know other choices of the function B can also describe the universe but lead to a different doomsday.


2021 ◽  
Vol 77 (3) ◽  
Author(s):  
Anslyn J. John

I review the state of knowledge of the composition of the universe for a non-specialist audience. The universe is built up of four components. These are radiation, baryonic (ordinary) matter, dark matter and dark energy. In this article, a quick outline of the theory of Big Bang nucleosynthesis is presented, and the origin of the elements is explained. Cosmology requires the presence of dark matter, which forms most of the mass of the universe, and dark energy, which drives the acceleration of the expansion. The dark sector is motivated, and possible explanations are stated.Contribution: As part of this special collection on building blocks, the building blocks of the universe are discussed and unsolved problems and proposed solutions are highlighted.


Author(s):  
Mohammed B. Al-Fadhli

The necessity of the dark energy and dark matter in the present universe could be a consequence of the antimatter elimination assumption in the early universe. Current cosmological models that rely on the dark side have left many unsolved mysteries, remarkably: tension in Hubble parameter measurements, the accelerated expansion, the fast orbital speed of stars, the dark flow observations, cosmic horizon, space flatness, absent of the antimatter, etc. On the other hand, General Relativity (GR) has relied on the spacetime to demonstrate the movement of matter due to a local curvature caused by the presence of matter. Founded on this, I trace the evolution of the spacetime worldlines based on the evolution of the universe spatial scale factor and its evolution time in polar coordinates in order to construct a potential spatial curvature over the temporal dimension or a global spacetime curvature. The mathematical derivations of a positively curved universe governed by only gravity revealed two opposite solutions of the worldline evolution. This possibly implies that the matter and antimatter could be evolving in opposite directions as distinct sides of the universe. By implementing the derived model, we find a decelerated phase of spatial expansion during the first 10 Gyr, that is followed by a second phase of an accelerated expansion; potentially matching the tension in Hubble parameter measurements. In addition, the model predicts a final time-reversal phase of spatial contraction, due to rapid surge in density i.e. reversal entropy, leading to a Big Crunch of a cyclic universe. The predicted density is 1.14. Other predictions are (1) an evolvable curved spacetime at the decelerated phase that is transformed to flatness at the accelerated phase with internal voids which could continuously increase the matter and antimatter densities elsewhere in both sides. (2) the spatial curvature through time dimension along spacetime worldlines was found to increase galaxy orbital speed and (3) a calculable flow rate of the matter side towards the antimatter side at the accelerated phase; conceivably explaining the dark flow observation. These findings may indicate the existence of the antimatter as a distinct side, which influences the evolution of the universe instead of the dark energy or dark matter. These theoretical outcomes and predictions are promising, which can be verified, fine-tuned or disproved using astrometric data in future works.


2021 ◽  
Author(s):  
Ekrem Aydiner ◽  
Isil Basaran-Oz ◽  
Tekin Dereli ◽  
Mustafa Sarisaman

Abstract The late time crossover from matter dominated era (represented power-law evolution) to the dark energy dominated era (represented exponential evolution) of the Universe evolution is the major problem in today’s physical cosmology. Unless this critical transition problem is solved, it is not possible to reach a holistic theory of cosmology. To explain this critical transition we propose a new model where the dark matter and dark energy interacting through a potential. Based on the FLRW framework we analytically solve this model and obtain the scale factor a(t). In addition, we numerically compute all cosmological quantities. We find more significant results to enlightening the physical mechanism of the critical transition. Firstly, we show that the scale factor a(t) has a hybrid form as a(t) = a0(t/t0) α e ht/t0 . This is main and important result in the presented work, which clearly indicates that the transition from the power-law to the exponential expansion of the Universe. The numerical results clearly provide that there is a time crossover tc in the scale factor a curve, which indicates the transition from the power-law to the exponential expansion of the Universe. Below t/t0 ≤ tc, matter era dominated hence time evolution of the Universe is given by a(t) ∝ (t/t0) α , on the other hand, above t/t0 > tc, the evolution is represented by a(t) ∝ exp(ht/t0). It is first time, the hybrid result for scale factor is exactly obtained from the presented model without use any approximation. Secondly, we fit the scale factor below and above tc. Surprisingly, we find that the scale factor behaves as a(t) ∝ (t/t0) 2/3 below t/t0 ≤ tc, and as a(t) ∝ exp(ht/t0) which indicates that the Hubble parameter takes the value in the interval of the around H0 = 69.5 and H0 = 73.5 km s−1Mpc−1 depend on the weak and strong interactions between dark components above t/t0 > tc, respectively. These are remarkable that α = 2/3 is completely consistent exact solution of the FLRW and re-scaled Hubble parameter H0 is the observable intervals given by Planck, CMB and SNIa data (or other combinations) for chosen interaction values are purely consistent with cosmological observations. Thirdly, we find from the model the transition point from matter dominated era to the dark energy dominated era in the cosmic time is the t0 = 9.8 Gyear which is consistent with the theoretical solution and observations. Additionally, we numerically obtain and analyse other cosmological quantities such as dimensionless Hubble parameter h, deceleration parameter q, jerk parameter j and EoS parameter w. We show that all cosmological quantities of this model are consistent observational results for the matter and dark energy dominated eras. As a result, we consider late time crossover of the Universe, we propose an interacting dark matter and dark energy model, we show that this model can explain the late time crossover phenomena of the Universe and our solutions are very good consistent with theoretical and observational results. Finally, we state that this work makes essential steps towards solving a critical outstanding problem of the cosmology, and has a potential to creates a paradigm for future studies in this field. Furthermore, the model also sheds light on the interaction mechanism of dark matter and dark energy in the Universe.


Author(s):  
Thomas Buckholtz

Physics theory has yet to settle on specific descriptions for new elementary particles, for dark matter, and for dark energy forces. Our work extrapolates from the known elementary particles. The work suggests well-specified candidate descriptions for new elementary particles, dark matter, and dark energy forces. This part of the work does not depend on theories of motion. This work embraces symmetries that correlate with motion-centric conservation laws. The candidate descriptions seem to explain data that prior physics theory seems not to explain. Some of that data pertains to elementary particles. Our theory suggests relationships between masses of elementary particles. Our theory suggests a relationship between the strengths of electromagnetism and gravity. Some of that data pertains to astrophysics. Our theory seems to explain ratios of dark matter effects to ordinary matter effects. Our theory seems to explain aspects of galaxy formation. Some of that data pertains to cosmology. Our theory suggests bases for inflation and for changes in the rate of expansion of the universe. Generally, our work proposes extensions to theory in three fields. The fields are elementary particles, astrophysics, and cosmology. Our work suggests new elementary particles and seems to explain otherwise unexplained data.


2013 ◽  
Vol 22 (14) ◽  
pp. 1350082 ◽  
Author(s):  
SHUO CAO ◽  
NAN LIANG

In order to test if there is energy transfer between dark energy (DE) and dark matter (DM), we investigate cosmological constraints on two forms of nontrivial interaction between the DM sector and the sector responsible for the acceleration of the universe, in light of the newly revised observations including OHD, CMB, BAO and SNe Ia. More precisely, we find the same tendencies for both phenomenological forms of the interaction term Q = 3γHρ, i.e. the parameter γ to be a small number, |γ| ≈ 10-2. However, concerning the sign of the interaction parameter, we observe that γ > 0 when the interaction between dark sectors is proportional to the energy density of dust matter, whereas the negative coupling (γ < 0) is preferred by observations when the interaction term is proportional to DE density. We further discuss two possible explanations to this incompatibility and apply a quantitative criteria to judge the severity of the coincidence problem. Results suggest that the γm IDE model with a positive coupling may alleviate the coincidence problem, since its coincidence index C is smaller than that for the γd IDE model, the interacting quintessence and phantom models by four orders of magnitude.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Aleksander Stachowski ◽  
Marek Szydłowski ◽  
Krzysztof Urbanowski

We consider a cosmology with decaying metastable dark energy and assume that a decay process of this metastable dark energy is a quantum decay process. Such an assumption implies among others that the evolution of the Universe is irreversible and violates the time reversal symmetry. We show that if we replace the cosmological time t appearing in the equation describing the evolution of the Universe by the Hubble cosmological scale time, then we obtain time dependent Λ(t) in the form of the series of even powers of the Hubble parameter H: Λ(t)=Λ(H). Our special attention is focused on radioactive-like exponential form of the decay process of the dark energy and on the consequences of this type decay.


Sign in / Sign up

Export Citation Format

Share Document