SYSTEMATICS OF SPIRAL ROTATION FROM TIDAL TORQUING

1994 ◽  
Vol 03 (supp01) ◽  
pp. 81-86
Author(s):  
RICARDO FLORES

We discuss the disk galaxy rotation curves expected in the tidal torque theory of angular momentum, in which the protogalactic angular momentum is not universal. If the fraction of dissipative material in a collapsed protogalaxy is approximately 5%, the value suggested by nucleosynthesis constraints if it is a universal constant, the amount of variation expected in the angular momentum (a) leads to rotation curves for bright galaxies whose systematics are much like those recently pointed out by Casertano and van Gorkom, and (b) the mass inside a “Holmberg” radius of 4.5 disk scale lengths shows a spread of values consistent with observations.

Galaxies ◽  
2013 ◽  
Vol 2 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Jean Alexandre ◽  
Martyna Kostacinska

2012 ◽  
Vol 21 (11) ◽  
pp. 1242002 ◽  
Author(s):  
PRITI MISHRA ◽  
TEJINDER P. SINGH

Flat galaxy rotation curves and the accelerating Universe both imply the existence of a critical acceleration, which is of the same order of magnitude in both the cases, in spite of the galactic and cosmic length scales being vastly different. Yet, it is customary to explain galactic acceleration by invoking gravitationally bound dark matter, and cosmic acceleration by invoking a "repulsive" dark energy. Instead, might it not be the case that the flatness of rotation curves and the acceleration of the Universe have a common cause? In this essay we propose a modified theory of gravity. By applying the theory on galactic scales we demonstrate flat rotation curves without dark matter, and by applying it on cosmological scales we demonstrate cosmic acceleration without dark energy.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 346
Author(s):  
Felipe J. Llanes-Estrada

The flattening of spiral-galaxy rotation curves is unnatural in view of the expectations from Kepler’s third law and a central mass. It is interesting, however, that the radius-independence velocity is what one expects in one less dimension. In our three-dimensional space, the rotation curve is natural if, outside the galaxy’s center, the gravitational potential corresponds to that of a very prolate ellipsoid, filament, string, or otherwise cylindrical structure perpendicular to the galactic plane. While there is observational evidence (and numerical simulations) for filamentary structure at large scales, this has not been discussed at scales commensurable with galactic sizes. If, nevertheless, the hypothesis is tentatively adopted, the scaling exponent of the baryonic Tully–Fisher relation due to accretion of visible matter by the halo comes out to reasonably be 4. At a minimum, this analytical limit would suggest that simulations yielding prolate haloes would provide a better overall fit to small-scale galaxy data.


1979 ◽  
Vol 84 ◽  
pp. 157-158
Author(s):  
D. Lynden-Bell

By considering the interaction of a single stellar orbit with a weak cos 2Φ potential it is shown that in the central regions of galaxies with slowly rising rotation curves, the elongations of the orbits will align along any potential valley and oscillate about it. This effect is more pronounced for elongated orbits. In such regions any pair of orbits will naturally align under their mutual gravity and so a bar will form. The gravity of this bar will drive a spiral structure in the outer parts of the galaxy where differential rotation is too strong to allow the orbits to be caught by the bar. The spiral structure carries a torque which slowly drains angular momentum from the bar, gradually making its outline more eccentric and slowing its pattern speed. In the outer parts of the bar only the more eccentric orbits align with the potential valley; the rounder ones form a ring or lens about the bar. As the pattern speed slows down, the corotation resonance and outer Lindblad resonance, which receive the angular momentun, move outwards. The evolution of the system is eventually slowed down by the weakness of these outer resonances where the material is rather sparse.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 398 ◽  
Author(s):  
Rand Dannenberg

Using the classical vacuum solutions of Newtonian gravity that do not explicitly involve matter, dark matter, or the gravitational constant, subject to an averaging process, a form of gravity relevant to the flattening of galaxy rotation curves results. The latter resembles the solution found if the vacuum is simply assigned a gravitational field density, and a volume of the vacuum is then excluded, with no averaging process. A rationale then follows for why these terms would become important on the galactic scale. Then, a modification of General Relativity, motivated by the Newtonian solutions, that are equivalent to a charge void, is partially defined and discussed in terms of a least action principle.


2004 ◽  
Vol 220 ◽  
pp. 281-286 ◽  
Author(s):  
Roelof S. de Jong ◽  
Susan Kassin ◽  
Eric F. Bell ◽  
Stéphane Courteau

We present a simple technique to estimate mass-to-light (M/L) ratios of stellar populations based on two broadband photometry measurements, i.e. a colour-M/L relation. We apply the colour-M/L relation to galaxy rotation curves, using a large set of galaxies that span a great range in Hubble type, luminosity and scale size and that have accurately measured HI and/or Hα rotation curves. Using the colour-M/L relation, we construct stellar mass models of the galaxies and derive the dark matter contribution to the rotation curves.We compare our dark matter rotation curves with adiabatically contracted Navarro, Frenk, & White (1997, NFW hereafter) dark matter halos. We find that before adiabatic contraction most high surface brightness galaxies and some low surface brightness galaxies are well fit by a NFW dark matter profile. However, after adiabatic contraction, most galaxies are poorly fit in the central few kpc. the observed angular momentum distribution in the baryonic component is poorly matched by ACDM model predictions, indicating that the angular momentum distribution is not conserved during the galaxy assembly process. We find that in most galaxies the dark matter distribution can be derived by scaling up the HI gas contribution. However, we find no consistent value for the scaling factor among all the galaxies.


2019 ◽  
Vol 485 (4) ◽  
pp. 5244-5255 ◽  
Author(s):  
Pablo López ◽  
Manuel E Merchán ◽  
Dante J Paz

2018 ◽  
Vol 27 (02) ◽  
pp. 1850007 ◽  
Author(s):  
Christian G. Böhmer ◽  
Nicola Tamanini ◽  
Matthew Wright

We consider a modification of General Relativity motivated by the treatment of anisotropies in Continuum Mechanics. The Newtonian limit of the theory is formulated and applied to galactic rotation curves. By assuming that the additional structure of spacetime behaves like a Newtonian gravitational potential for small deviations from isotropy, we are able to recover the Navarro–Frenk–White profile of dark matter halos by a suitable identification of constants. We consider the Burkert profile in the context of our model and also discuss rotation curves more generally.


2016 ◽  
Vol 466 (2) ◽  
pp. 1648-1668 ◽  
Author(s):  
Harley Katz ◽  
Federico Lelli ◽  
Stacy S. McGaugh ◽  
Arianna Di Cintio ◽  
Chris B. Brook ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document